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generalizes DCA to LP; non-degenerate pivots; positive edge rule

MMCC : minimum mean cost cycle-canceling algorithm for networks
70%-90% of the PS pivots are degenerate; MMCC strongly polynomial.

What are the links between PS, DCA, IPS, and MMCC? J

... and Dantzig-Wolfe decompostion ?
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OBSERVATION

LP IN STANDARD FORM

@ Find a potential improving direction y° € R".
© Determine step-size p° € R.
@ Compute x' :=x% + p°y°.
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PRII\“IAL“J"JDUAL FORMULATIONS OF THE PRICING IN PRIMAL SIMPL

GG=0,Vj € B: PRICING FOR j € N (NON-BASIC VARIABLES)

Selection of an entering variable into basis Ag relies on
the minimum reduced cost of non-basic variables
T _cTA-L G — Ta: i
7T =cgAg GG=c —m'a;, VjeN.
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PRICING FOR j € N (NON-BASIC VARIABLES)

G=0,VjeB:
Selection of an entering variable into basis Ag relies on

the minimum reduced cost of non-basic variables
— cTA? 7 = :
7T =cgAg GG=c —m'a;, VjeN.

FIND THE MINIMUM REDUCED COST VALUE g (OPTIMAL IF g > 0)

max [
w < ¢—mla;, VjeN [y

*** 1 is the smallest reduced cost (given 7). ***
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PRII\“IALJJ’/DUAL FORMULATIONS OF THE PRICING IN PRIMAL SIMPLEX

PRICING FOR j € N (NON-BASIC VARIABLES)

G=0,VjeB:

Selection of an entering variable into basis Ag relies on
the minimum reduced cost of non-basic variables
T_ TA—L Fo— Ta: H
7T =cgAg G=c¢—m'a, VjelN.

FIND THE MINIMUM REDUCED COST VALUE g (OPTIMAL IF g > 0)

max /.
w < ¢—mla;, VjeN [y

**X 1 is the smallest reduced cost (given 7). ***

EQUIVALENT TO FINDING A CONVEX COMBINATION OF NON-BASIC VARIABLES

/= min ZEJyJ

Sy =1 [1]

JEN
Yj 0, Ve N

A%
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DIRECTION y° € R”

(0]

y’ IN THE PRIMAL SIMPLEX

Direction y° € R” :
the selected entering variable,
the non-selected non-basic variables (they remain at 0),
and the basic ones.

Step size computed such that x* :=x% 4+ p°y° > 0.
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OBSERVATION # 2 : DEGENERATE SOLUTION ON SIMPLEX-TABLEAU
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OBSERVATION # 2 : DEGENERATE SOLUTION ON SIMPLEX-TABLEAU

LEFT MULTIPLICATION BY BASIS INVERSE Agl

x1 x2 x3 A4 A5 A6 x4 x5 x6 x7 x8 a,
c 2 3 1 10 17 -20 14 -4 5
P
x 2 2 15 7=:30 2 1
1 4 3 510-10 = 25 3 2
1 3 1 2 3 11= 50 1 5
1 6 5-13= 0 ? 0
1 3 4 8= 0 ? 0
1 34 0= 0 ? 0
x 30255 0 0 0 0 0 0 0 0 185 =¢'s°
0.4 0.3 0.3
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OBSERVATION # 3 : STRUCTURES

PRIMAL SIMPLEX TABLEAU

1 b

1 b,

1 b,

1 = 5

1 =0

1 =0

1 =0

1 =0

1 =0

1 =0

- =0

20 .
1,0

-/
< <0

3steps selection of 1 entering variable
movements on the m basic variables

allows positive step size
allows zero step size

*** Changes on at most m + 1 components. *** )
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OBSERVATION # 3 : STRUCTURES

E EDGE STRATEGY

-
nowonon

[
=E-X-R-N-X-]
[T T TR T
oo oooa=>

- =0
=0

<« -- I
€ =<0

)

3steps [l selection of 1 entering variable

movements on the positive basic variables

. allows positive step size
v
*** Changes on at most p + 1 components. ***
Non-degenerate pivot.
v
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POSITIVE EDGE : IDENTIFICATION IN O(m)

LEVEL ABOVE 25%

SPEEDUP > 2 FOR LPS WITH A DEGENERACY

Time Speedup

0.4 0.6

Degeneracy Level

0.8 1.0
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NOTATION

Vectors and matrices are written in bold face.

Iy : the £ x £ identity matrix.
0 (1) : a vector/matrix with all zeros (ones) entries of appropriate dimensions.
Agc : sub-matrix of A containing the rows and columns indexed by R and C.

Basis Ag, inverse Agl, cLxs, Apgxg, T = cBAE1
|[:<X/:<ulr:7 XL:|L, Xy = uy

USEFUL DECOMPOSITION OF x € R” IN Ax=b, I<x<u

XS

X

X XSL X F

For@QSQB:x:{S}z 5k x:{w}z XL
X§ —U

Xy
X3,

U
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Dual Guided Pivot Rules for LPs

GENERIC ALGORITHM WITH SINGLE PARAMETER SET S, @ C SC B

© Let k = 0 and assume a feasible basic solution x* to LP (standard form).

© Select 5 C B. z* = min cixs +cixs

st. Aixs +Alxs =b
Xs, X3 Z 0

© From As, retrieve an s X s basis Ars for row-set R.

z*:=  min cixs +cixs
st. ALsxs +Al:xs =br [mRg]
Aloxs +Alxs =bz [n7]

xs,xz >0

@ Fix 7r in row-set R; 7z is free.
@ Determine the smallest reduced cost 1i£.

péi=max p st. u < ¢ —mhar — whaz, Vj

If & > 0, STOP. Current solution x* is optimal for LP.
@ Retrieve direction y& € R” and compute its maximum step-size p&.
Update xK1 .= xk 4 phyk, 21 = 2k 4 pk ks ko= k4 1.
@ Goto Step 2.

©
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Dual Guided Pivot Rules for LPs

LINEAR PROGRAM LP
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Dual Guided Pivot Rules for LPs

LINEAR PROGRAM LP

z5 = min cTx
st. Ax =b
Il < x <u

GENERIC ALGORITHM WITH SINGLE PARAMETER SET S, 0 C SCB

@ Let k = 0 and assume a feasible basic solution x* to LP.
Select  C S C B.
From As, retrieve Ags and construct residual problem LPs(xk).

Fix dual variables in row-set R : mg.

© ©0 0 O

Determine the value of the smallest reduced cost 1¥.
If & > 0, STOP. Current solution x* is optimal for LP.

Retrieve direction y& € R” and compute its maximum step-size p.
Update x*1 .= xk 4 pkyk.

2= 2 4 s

k:=k+1.
@ Goto Step 2.

© ©
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STEP 3 CONSTRUCT RESIDUAL PROBLEM LP(xK)

ASSUME A FEASIBLE SOLUTION Xk =

x=x+y, yeR"
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STEP 3 CONSTRUCT RESIDUAL PROBLEM LP(xK)

=x"+(-9) ¥y>0, y7y=0, y<v , y<t
yF Ye ;
=X+ (| % v, )i ¥¥y>0, yTy=0, y<r+, y<¥
Yu Yu
Yi
—  memmmemmm e e e e >
Yj G
¢ A
-G
Xj
£ o ]
g X U
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STEP 3 CONSTRUCT RESIDUAL PROBLEM LP(x¥)
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STEP 3 CONSTRUCT RESIDUAL PROBLEM LP(xK)

RESIDUAL PROBLEM LP(x")

z*:=c"™x* + min c(y—-Y)
st. Ay-y) = 0
<y<e
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STEP 3 CONSTRUCT RESIDUAL PROBLEM LP(x¥)

min ce(Yr —¥r) + c[(¥) — (V)
st. Ar(¥r—Yr) + Al(y) — Aulyy) = 0
¥F >0, yp >0, y. >0, Yy =0
Yr <7, Yp <Tr, yo <, Yy <ty )
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STEP 3 CONSTRUCT RESIDUAL PROBLEM LP(xK)

RESIDUAL PROBLEM WITH S = B (BASIC), S = N (NON-BASIC)

X+ min cf(¥s —Vs) + Ch, YN, — S Yy,
st. As(Ys —¥g) + Anyn, — AnyYy, =0
y8207§320 YNLZanNUZO
Yr <Tr, Yp <
Y5, <0, yg, <0 ynv <, Y, <ty
B=FUB,UBy; N = N, U Ny )
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STEP 4 FIX DUAL VARIABLES IN ROW-SET R

v (V¢ - ¢)
For  C S C B, find y* = | = o bf of min reduced cost p*.
¥s (Y5 —¥s)

For basic columns As,
retrieve a partial basis Ags, a set of s independent rows.

=il
T [ A 0 L ARs,l 0
AZS Im—s 7AZSAR5 Imfs

17/35



STEP 4 FIX DUAL VARIABLES IN ROW-SET R

v (V¢ - ¢)
For  C S C B, find y* = | = o bf of min reduced cost p*.
¥s (Y5 —¥s)

For basic columns As,
retrieve a partial basis Ags, a set of s independent rows.

—1
T- Ars 0 T-1_ ARil 0
7AZSAR5 Imfs

AZS Im—s
Indeed, T is a basis of R"”. )
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STEP 4 FIX DUAL VARIABLES IN ROW-SET R

pcsScB
Perform T~*A(y —y) = 0.

A block angular structure appears after the transformation by T~ .

GENERAL CASE

<X+ min cl(¥s —¥s) + ci(¥s —¥s)
st. (¥s—V¥s) + Aps(¥s—V¥5) =0 [t =cs]
ys >0, y5>0
Azs(Ys —¥s) =0 [ip; free]
¥5>0,y:>0
ys <¥s, ¥5 <Ts ys <75, ¥5 <';

Observe €ts = 0 (basic variables).

Master basis Is. DW subproblem in red.
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STEP 5 FIND MINIMUM REDUCED COST ,LL

PRICING OF THE VARIABLES

S C B, hence cs = 0.
Therefore pricing of yz and yz needed to get partial direction ()751‘ —?E)

followed by impact on (y& fyg) to complete direction y* = [

PRH\'IAL‘,‘“’DUAL FORMULATIONS OF THE PRICING

max p st. plT < c} — YRAgs — "/’}'&25 [¥s]
p17 < —(cl — YRARs — ¥IAzs) [Vs]

0
*** Optimal solution : 1§, ¥£ and 7?‘; e
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STEP 6 RETRIEVE DIRECTION yé OF MINIMUM REDUCED COST [lé

. COMPLETE DIRECTION y&

Given 1/f < 0 and (y£ —¥5%), find impacts on (y% — y%).

(Ys —¥s) + ARE(YE*S’E) =0
ys >0, 3?5 >0 5;3 37j =0, Vj€ESF

DIRECTION y&

yh = (5 —S’fs _ —Aps(¥E —¥8) | [ Impact level (MP)
° (¥s — ys (vs — y&) | * | Pricing level (SP)
y5,§5 take positive and negative parts of — ARS( z — YS) respectively .
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STEP 6 COMPUTE MAXIMUM STEP-SIZE p&

r —k r -k r <k 7 r <k
Yse rse Yse rs,
—k < | =k k < 0
Pl Ys, S| s, | P Ys, S
> <k <k
LYsy | [ O | L ¥s, 1 LTS,
 —k 7 r -k T r H,S 7 r %lﬁ 7
Y5z rs. Y5e rse
ok —k
Pl Y5 < frs, |+ P 0 <
<k —k
| 0 | | 0 | | ¥5, | | s, | |

10 out of 12 types of residual upper bonds to verify. (0 C S C BJ
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STEP 6 COMPUTE MAXIMUM STEP-SIZE p&

8 types of residual upper bonds to verify for Primal Simplex. S = BJ
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STEP 6 COMPUTE MAXIMUM STEP-SIZE p&

<k <k
p Zf <| "
Yz 0

Only 2 types of residual upper bonds to verify for PS in standard form.
S=B=PUZ (positive and zero variables)

<
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STEP 6 COMPUTE MAXIMUM STEP-SIZE p&

R~
—
< <
r e

4 types of strictly positive residual upper bonds to verify in MMCC. S = @J
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STEP 6 COMPUTE MAXIMUM STEP-SIZE p&

hs)
—
~t
-
IA
—
=3
-
X
<1
c»
[
IA
—
=1
Q»

4 types of strictly positive residual upper bonds to verify in IPS. S = FJ
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SPECIAL CASE #1 : S=B

T—[As 0, T'= { Agt ]

B =FUB,UBy;

0
N = N_UNy
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SPECIAL CASE

T—[As 0, T'= { Agt ]

B=FUB,UBy; N=N_UNy

Tk . T - T = T o
c™x"+ min cf(ys —¥g) + Cy, YN — Sy Yy

st. (Y6 —¥s) + Awyn —AnVy, = 0 [¥T=c4

YNL > 07 yNU > 0
Yr <Fr, Ve <
yBL S Oa y‘BU S 0 YNL S ?NU?NU S?NU *PB Z 0

v
PROPERTIES OF PS

No equality constraints in the pricing problem.

Pricing contains e convex combination of the non-basic variables
e non-negativity restrictions (a cone).

Due to the step-size xpg > 0%, possible degenerate pivots.

Oscillation of 5 ; it may even not converge towards O.

26/35



SPECIAL CASE #2 : S=F=S5S=LUU
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SPECIAL CASE #2 : S=F=5=LUU

T =

c"x* + min ct(Yr—=¥r) +  clyi—cl¥y
st. r—Yr) + ArYi—ArYy = 0 [thg=cF]
YF > 05 S’F > 0
Azy—Azy, = 0 [¢]

yr <Fr, Yp <TF, yo <71,y <"y *p > Ox

v
PROPERTIES OF IPS

f equality constraints in the master problem, m — f in the pricing problem.

Non-degenerate pivots only (pr > 0).
2>z > 2% > ... =z* cost strictly decreasing at each iteration (pr > 0).

Oscillation of pr but converging towards 0.
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SPECIAL CASE #3 : S=10

Select S=0.T=[0 I, ]J*lz{ 0 }
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cTx + min c"(y —Y)

st. Ay—-y) =0 Directions
y,y >0 in the cone
Y, Yyu <0 at vertex x*

<k <k E
yF7yF7yL7yU S L= iR 4V} *Step Size py > 0=

PROPERTIES oF MMCC

All equality constraints in the pricing problem.

Upper bounds in the master problem.
2>z > 2% > ... =2z* cost strictly decreasing at each iteration (pg > 0).
pl <yt <p?<---=0 smallest reduced cost non decreasing.

MMCC is strongly polynomial for network flow problems in O(mn) phases.
Goldberg and Tarjan (1989), Radzick and Goldberg (1994)
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[LLUSTRATION OF z (NETWORK WITH n=1025, m=91,220)

COMPUTATIONAL RESULTS

6-10°

__4-.10°

2.10°

Objective (z

IPS (154.483s)
-MMCC (102.115s)

k -10%
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© FOR MMCC AND IPS ON A NETWORK (n=1025, m=91,220)

COMPUTATIONAL RESULTS

0
—500 |- 1
—1.000 |
- -IPS (154.483s)
—1,500 | -MMCC (102.115s)
|

0 02 04 06 038 1 1.2 14
k -10%
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SOME PROPERTIES

MMCC-LP IPS DCA PS
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SOME PROPERTIES

MMCC-LP IPS DCA PS

o SN{LU U} # 0 : It may come up with degenerate pivots and not converge.

e Primal Simplex method (PS). S=B,*xpg>0x
@ ) C S C F : It ensures a non-degenerate pivot at every iteration.
e Improved Primal Simplex algorithm (IPS). S=F,xpr>0x

e Minimum mean cycle-canceling algorithm (MMCC) S =0, x py > 0 *
Strongly polynomial for network flow problems.
* S C F : Optimal direction y§ can be an interior ray.
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MMCC:
non-extreme ray a-c-d




Vector Space Decomposition

*** |magine the same transformation is kept for a while...
o T:=[A, A, where A is a set of independent columns.
Ar . .
o A= A | where A is a set of s independent rows of A.
o T=

—1
Ar 0 — /\R1 0
Az o AN s

o T~ splits row-space R™ of LP(x*) into two vector subspaces V and V*.

@ Vector subspace basis A spans V of dimension 0 < s < m.

o Vector a € V if and only if a; = 0, where a = T 'a = { a(;? ]

o S C B : index set of basic columns spanned by A.

Algorithmic properties derived according to subset S.
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SPECIAL CASE #4 : FCSCB

DyNaMIC CONSTRAINT AGGREGATION FOR SET PARTITIONING
(ELHALLAOUTI ET AL. 2005)

The partition of the row-set is derived from the f groups of identical rows of Ar.

Ar A
1 1 1
1 1 1
1 1 1
1 1 Y 1
1 1 1

[ [
= =
—

—

—
—
—
\_

1

v

PROPERTIES

F C S C B for fractional solutions but S = F (or S = () for binary solutions.
Degenerate pivots may occur, p > 0, if r > f.
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FINAL REMARK

o
Yi
— e >
Yi G
e
=G
Xj
r o 1
T hd T
k .
¢ X uj
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