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Motivation

PS : Primal Simplex and degenerate solutions
perturbation, pivot rules, etc. (Terlaky and Zhang 1993)

CG : Column Generation for huge problems CG ≡ PS
perturbation of the master problem (1985-2000)

DVS : Dual Variable Stabilization (du Merle et al. 1999)
Oukil et al (2007) : cpu time reduction by factors of 10 to 100

DCA : Dynamic Constraints Aggregation for Set Partitioning Problems
(Elhallaoui, Metrane, Desaulniers, Soumis 2005-08)
cpu time reduction by factors of 10 to 100

IPS : Improved Primal Simplex
(Raymond, Soumis, Metrane, Orban 2008-11)
generalizes DCA to LP ; non-degenerate pivots ; positive edge rule

MMCC : minimum mean cost cycle-canceling algorithm for networks
70%–90% of the PS pivots are degenerate ; MMCC strongly polynomial.

What are the links between PS, DCA, IPS, and MMCC?

... and Dantzig-Wolfe decompostion ?
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Observation #1

LP in standard form

min cᵀx
Ax = b [π]
x ≥ 0

From x0 to x1

1 Find a potential improving direction y0 ∈ Rn.
2 Determine step-size ρ0 ∈ R.
3 Compute x1 := x0 + ρ0 y0.
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Primal/dual formulations of the pricing in Primal Simplex

c̄j = 0,∀j ∈ B : Pricing for j ∈ N (non-basic variables)

Selection of an entering variable into basis AB relies on
the minimum reduced cost of non-basic variables
πᵀ = cᵀBA

−1
B c̄j = cj − πᵀaj , ∀j ∈ N.

Find the minimum reduced cost value µ (Optimal if µ ≥ 0)

max µ

µ ≤ cj − πᵀaj , ∀j ∈ N [yj ]

*** µ is the smallest reduced cost (given π). ***

Equivalent to finding a convex combination of non-basic variables

µ = min
∑
j∈N

c̄jyj∑
j∈N

yj = 1 [µ]

yj ≥ 0, ∀j ∈ N
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Direction y0 ∈ Rn

y0 in the Primal Simplex

Direction y0 ∈ Rn :
the selected entering variable,

the non-selected non-basic variables (they remain at 0),
and the basic ones.

Step size computed such that x1 := x0 + ρ0 y0 ≥ 0.
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Observation # 2 : Degenerate solution on simplex-tableau

Left multiplication by basis inverse A−1
B
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Observation # 3 : Structures

Primal Simplex tableau

*** Changes on at most m + 1 components. ***
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Observation # 3 : Structures

Positive Edge strategy

*** Changes on at most p + 1 components. ***
Non-degenerate pivot.
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Positive Edge : identification in O(m)

Speedup > 2 for LPs with a degeneracy level above 25%
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Notation

Vectors and matrices are written in bold face.

I` : the `× ` identity matrix.
0 (1) : a vector/matrix with all zeros (ones) entries of appropriate dimensions.
ARC : sub-matrix of A containing the rows and columns indexed by R and C .

Basis AB , inverse A−1
B , cᵀBxB ,ABxB , π = cBA−1

B ...
lF < xF < uF , xL = lL, xU = uU

Useful decomposition of x ∈ Rn in Ax = b, l ≤ x ≤ u

x =

 xF
xL
xU

 x =

[
xB
xN

]
=


xF
xBL

xBU

xNL

xNU



For ∅ ⊆ S ⊆ B : x =

[
xS
xS̄

]
=



xSF
xSL
xSF
xS̄U
xS̄L
xS̄U

 x =

[
x∅
x

]
=

 xF
xL
xU


10/35



Dual Guided Pivot Rules for LPs

Generic Algorithm with single parameter set S , ∅ ⊆ S ⊆ B

1 Let k = 0 and assume a feasible basic solution xk to LP (standard form).
2 Select S ⊆ B. z? := min cᵀSxS + cᵀ

S̄
xS̄

st. Aᵀ
SxS + Aᵀ

S̄
xS̄ = b

xS , xS̄ ≥ 0

3 From AS , retrieve an s × s basis ARS for row-set R.
z? := min cᵀSxS + cᵀ

S̄
xS̄

st. Aᵀ
RSxS + Aᵀ

RS̄
xS̄ = bR [πR ]

Aᵀ
ZSxS + Aᵀ

ZS̄
xS̄ = bZ [πZ ]

xS , xS̄ ≥ 0

4 Fix πR in row-set R ; πZ is free.
5 Determine the smallest reduced cost µk

S .
µk
S := max µ st. µ ≤ cj − πᵀ

RaRj − π
ᵀ
ZaZj , ∀j

If µk
S ≥ 0, STOP. Current solution xk is optimal for LP.

6 Retrieve direction ykS ∈ Rn and compute its maximum step-size ρkS .
7 Update xk+1 := xk + ρkS y

k
S ; z

k+1 := zk + ρkS µ
k
S ; k := k + 1.

8 Goto Step 2.
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Step 3 Construct residual problem LP(xk)

Assume a feasible solution xk =

 xkF
xkL
xkU


x := xk + y, y ∈ Rn

= xk + (~y − ~y), ~y, ~y ≥ 0, ~y ᵀ ~y = 0, ~y ≤~r k , ~y ≤ ~rk

= xk + (

 ~yF
~yL
~yU

−
 ~yF

~yL
~yU

) ; ~y, ~y ≥ 0, ~y ᵀ ~y = 0, ~y ≤~r k , ~y ≤ ~rk

xj

→
yj

←
yj

−cj

cj

uj`j xk
j
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Step 3 Construct residual problem LP(xk)

Residual problem LP(xk) ; x := xk + (~y − ~y) (change of variables)

z? := min cᵀxk + cᵀ(~y − ~y)

st. Axk + A(~y − ~y) = b

0 ≤ ~y ≤~r k

0 ≤ ~y ≤ ~rk

Residual problem LP(xk)

z? := cᵀxk + min cᵀ(~y − ~y)

st. A(~y − ~y) = 0

0 ≤ ~y ≤~r k

0 ≤ ~y ≤ ~rk
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Step 3 Construct residual problem LP(xk)

Residual problem with S = F , S̄ = L ∪ U

z? := cᵀxk+

min cᵀF (~yF − ~yF ) + cᵀL(~yL) − cᵀU( ~yU)

st. AF (~yF − ~yF ) + AL(~yL) − AU( ~yU) = 0

~yF ≥ 0, ~yF ≥ 0, ~yL ≥ 0, ~yU ≥ 0

~yF ≤~rF , ~yF ≤ ~rF , ~yL ≤~rL, ~yU ≤ ~rU
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Step 3 Construct residual problem LP(xk)

Residual problem with S = B (basic), S̄ = N (non-basic)

cᵀxk+ min cᵀB(~yB − ~yB) + cᵀNL
~yNL − cᵀNU

~yNU

st. AB(~yB − ~yB) + ANL
~yNL − ANU

~yNU
= 0

~yB ≥ 0, ~yB ≥ 0 ~yNL ≥ 0, ~yNU
≥ 0

~yF ≤~rF , ~yF ≤ ~rF
~yBL
≤ 0, ~yBU ≤ 0 ~yNL ≤~rNL , ~yNU

≤ ~rNU

B = F ∪ BL ∪ BU ; N = NL ∪ NU
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Step 4 Fix dual variables in row-set R

For ∅ ⊆ S ⊆ B, find yk =

[
ykS
ykS̄

]
=

[
(~y k

S − ~ykS)

(~y k
S̄ − ~ykS̄)

]
of min reduced cost µk .

For basic columns AS ,
retrieve a partial basis ARS , a set of s independent rows.

T =

[
ARS 0
AZS Im−s

]
T−1 =

[
A−1

RS 0
−AZSA−1

RS Im−s

]

Indeed, T is a basis of Rm.
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Step 4 Fix dual variables in row-set R

∅ ⊆ S ⊆ B

Perform T−1A(~y − ~y) = 0.

A block angular structure appears after the transformation by T−1.

General case πᵀ = ψᵀT−1

cᵀxk+ min cᵀS(~yS − ~yS) + cᵀ
S̄

(~yS̄ − ~yS̄)

st. (~yS − ~yS) + ĀRS̄(~yS̄ − ~yS̄) = 0 [ψR = cS ]

~yS ≥ 0, ~yS ≥ 0
ĀZS̄(~yS̄ − ~yS̄) = 0 [ψZ free]

~yS̄ ≥ 0, ~yS̄ ≥ 0
~yS ≤~rS , ~yS ≤ ~rS ~yS̄ ≤~rS̄ , ~yS̄ ≤ ~rS̄

Observe c̄S = 0 (basic variables).

Master basis Is . DW subproblem in red.
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Step 5 Find minimum reduced cost µk
S

Pricing of the variables

S ⊆ B, hence c̄S = 0.
Therefore pricing of ~yS̄ and ~yS̄ needed to get partial direction (~y k

S̄ − ~ykS̄)

followed by impact on (~y k
S − ~ykS) to complete direction yk =

[
ykS
ykS̄

]
.

Primal/dual formulations of the pricing ψᵀ
R = cᵀSA

−1
RS

max µ st. µ1ᵀ ≤ cᵀ
S̄
−ψᵀ

RARS̄ −ψ
ᵀ
Z ĀZS̄ [~yS̄ ]

µ1ᵀ ≤ −(cᵀ
S̄
−ψᵀ

RARS̄ −ψ
ᵀ
Z ĀZS̄) [ ~yS̄ ]

A convex combination of the variables ~yS̄ and ~yS̄
µ = min (cᵀ

S̄
−ψᵀ

RARS̄)(~yS̄ − ~yS̄)

st. 1ᵀ~yS̄ + 1ᵀ ~yS̄ = 1 [µ]

AZS̄(~yS̄ − ~yS̄) = 0 [ψZ ]

~yS̄ , ~yS̄ ≥ 0, ~yS̄L ≤ 0, ~yS̄U ≤ 0

*** Optimal solution : µk
S , ~y

k
S̄ and ~ykS̄ . ***
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Step 6 Retrieve direction ykS of minimum reduced cost µk
S

... Complete direction ykS

Given µk < 0 and (~y k
S̄ − ~ykS̄), find impacts on (~ykS − ~ykS).

(~yS − ~yS) + ĀRS̄(~ykS̄ − ~ykS̄) = 0
~yS ≥ 0, ~yS ≥ 0 ~yj ~y j = 0, ∀j ∈ SF

Direction ykS

ykS =

[
(~ykS − ~ykS)

(~ykS̄ − ~ykS̄)

]
=

[
−ĀRS̄(~ykS̄ − ~ykS̄)

(~ykS̄ − ~ykS̄)

]
:

[
Impact level (MP)

Pricing level (SP)

]

~ykS , ~ykS take positive and negative parts of − ĀRS̄(~ykS̄ − ~ykS̄), respectively .
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Step 6 Compute maximum step-size ρkS

ρ

 ~y k
SF

~y k
SL

~ySU

 ≤
 ~r kSF
~r kSL
0

 ; ρ

 ~ykSF
~ykSL
~ykSU

 ≤
 ~rkSF

0
~rkSU



ρ

 ~y k
S̄F

~y k
S̄L

0

 ≤
 ~r kS̄F
~r kS̄L
0

 ; ρ

 ~ykS̄F
0
~ykS̄U

 ≤
 ~rkS̄F

0
~rkS̄U



10 out of 12 types of residual upper bonds to verify. ∅ ⊆ S ⊆ B

21/35



Step 6 Compute maximum step-size ρkS

ρ

 ~y k
F

~y k
BL

~yBU

 ≤
 ~r kF
~r kBL

0

 ; ρ

 ~ykF
~ykBL

~ykBU

 ≤
 ~rkF

0
~rkBU



ρ
[
~y k
NL

]
≤
[
~r kNL

]
; ρ

[
~ykNU

]
≤
[

~rkNU

]
8 types of residual upper bonds to verify for Primal Simplex. S = B
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Step 6 Compute maximum step-size ρkS

ρ

[
~ykP
~ykZ

]
≤

[
~rkP
0

]

Only 2 types of residual upper bonds to verify for PS in standard form.
S = B = P ∪ Z (positive and zero variables)
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Step 6 Compute maximum step-size ρkS

ρ

[
~y k
F

~y k
L

]
≤

[
~r kF
~r kL

]
; ρ

[
~ykF
~ykU

]
≤

[
~rkF
~rkU

]

4 types of strictly positive residual upper bonds to verify in MMCC. S = ∅
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ρ
[
~y k
F

]
≤
[
~r kF

]
; ρ

[
~ykF
]
≤
[

~rkF
]

ρ
[
~y k
L

]
≤
[
~r kL

]
; ρ

[
~ykU
]
≤
[

~rkU
]

4 types of strictly positive residual upper bonds to verify in IPS. S = F

25/35



Special case #1 : S = B

T = [AB ∅], T−1 =

[
A−1

B

∅

]
B = F ∪ BL ∪ BU ; N = NL ∪ NU

Primal simplex method (Dantzig 1945)

cᵀxk+ min cᵀB(~yB − ~yB) + cᵀNL
~yNL − cᵀNU

~yNU

st. (~yB − ~yB) + ĀNL
~yNL − ĀNU

~yNU
= 0 [ψᵀ = cB ]

~yB ≥ 0, ~yB ≥ 0
~yNL ≥ 0, ~yNU

≥ 0
~yF ≤~rF , ~yF ≤ ~rF
~yBL
≤ 0, ~yBU ≤ 0 ~yNL ≤~rNL , ~yNU

≤ ~rNU ∗ρB ≥ 0∗

Properties of PS

No equality constraints in the pricing problem.
Pricing contains • convex combination of the non-basic variables

• non-negativity restrictions (a cone).
Due to the step-size ∗ρB ≥ 0∗, possible degenerate pivots.
Oscillation of µB ; it may even not converge towards 0.
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Special case #2 : S = F ⇒ S̄ = L ∪ U

T =

[
ARF 0
AZF Im−r

]
, T−1 =

[
A−1

RF 0
−AZSA−1

RF Im−r

]
.

Improved Primal Simplex method (Elhallaoui et al. 2011)

cᵀxk + min cᵀF (~yF − ~yF ) + cᵀL~yL − cᵀU ~yU

st. (~yF − ~yF ) + ĀRL~yL − ĀRU ~yU = 0 [ψR = cF ]

~yF ≥ 0, ~yF ≥ 0

ĀZL~yL − ĀZU ~yU = 0 [ψZ ]

~yL ≥ 0, ~yU ≥ 0

~yF ≤~rF , ~yF ≤ ~rF , ~yL ≤~rL, ~yU ≤ ~rU ∗ρ > 0∗

Properties of IPS

f equality constraints in the master problem, m − f in the pricing problem.

Non-degenerate pivots only (ρF > 0).

z0 > z1 > z2 > · · · = z? cost strictly decreasing at each iteration (ρF > 0).

Oscillation of µF but converging towards 0.
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Special case #3 : S = ∅

Select S = ∅. T =
[
∅ Im

]
,T−1 =

[
∅
Im

]

Minimum mean cycle-canceling algorithm adapted for LP

cᵀxk+ min cᵀ(~y − ~y)

st. A(~y − ~y) = 0 Directions

~y, ~y ≥ 0 in the cone

~yL, ~yU ≤ 0 at vertex xk

~yF , ~yF ,~yL, ~yU ≤~r kF , ~rkF ,~r kL , ~rkU ∗Step size ρ∅ > 0∗

Properties of MMCC

All equality constraints in the pricing problem.

Upper bounds in the master problem.

z0 > z1 > z2 > · · · = z? cost strictly decreasing at each iteration (ρ∅ > 0).

µ0 ≤ µ1 ≤ µ2 ≤ · · · = 0 smallest reduced cost non decreasing.
MMCC is strongly polynomial for network flow problems in O(mn) phases.

Goldberg and Tarjan (1989), Radzick and Goldberg (1994)
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Illustration of z (Network with n=1025, m=91,220)
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µ for MMCC and IPS on a network (n=1025, m=91,220)
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Some Properties

S ∩ {L ∪ U} 6= ∅ : It may come up with degenerate pivots and not converge.
• Primal Simplex method (PS). S = B, ∗ ρB ≥ 0 ∗
∅ ⊆ S ⊆ F : It ensures a non-degenerate pivot at every iteration.
• Improved Primal Simplex algorithm (IPS). S = F , ∗ ρF > 0 ∗
• Minimum mean cycle-canceling algorithm (MMCC) S = ∅ , ∗ ρ∅ > 0 ∗
Strongly polynomial for network flow problems.

* S ⊂ F : Optimal direction ykS can be an interior ray.
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Vector Space Decomposition

*** Imagine the same transformation is kept for a while...

T := [ Λ, Λ⊥], where Λ is a set of independent columns.

Λ =

[
ΛR

ΛZ

]
, where ΛR is a set of s independent rows of Λ.

T =

[
ΛR 0
ΛZ Im−s

]
T−1 =

[
Λ−1

R 0
ΛZΛ

−1
R Im−s

]

T−1 splits row-space Rm of LP(xk) into two vector subspaces V and V⊥.

Vector subspace basis Λ spans V of dimension 0 ≤ s ≤ m.

Vector a ∈ V if and only if āZ = 0, where ā = T−1a =

[
āR
0

]
.

S ⊆ B : index set of basic columns spanned by Λ.

Algorithmic properties derived according to subset S .
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Special case #4 : F ⊆ S ⊆ B

Dynamic Constraint Aggregation for Set Partitioning
(Elhallaoui et al. 2005)

The partition of the row-set is derived from the f groups of identical rows of AF .

AF



1 1
1 1

1 1
1 1
1 1
1 1

1 1
1 1

7→

Λ



1
1

1
1

1
1

1
1

.

Properties

F ⊆ S ⊆ B for fractional solutions but S = F (or S = ∅) for binary solutions.
Degenerate pivots may occur, ρ ≥ 0, if r > f .
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Final remark

xj

→
yj

←
yj

−cj

cj

uj`j xk
j

Residual problem LP(xk)

z? := cᵀxk + min cᵀ(~y − ~y)

st. A(~y − ~y) = 0

0 ≤ ~y ≤~r k

0 ≤ ~y ≤ ~rk
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