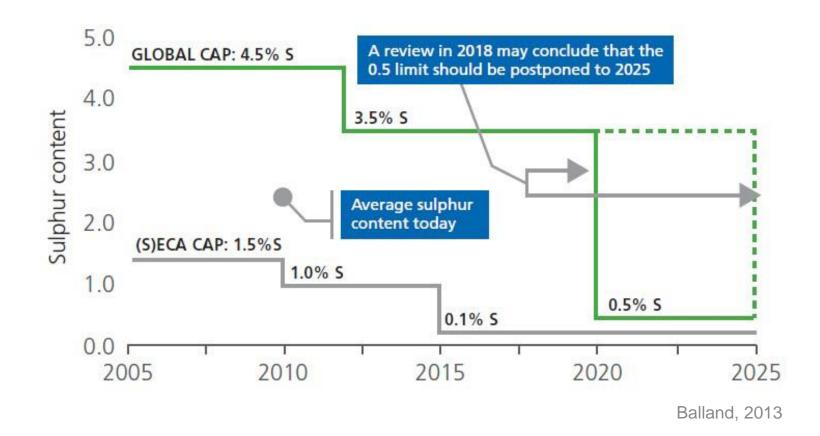


Speed Optimization with Emission Control Area Regulations

Nora Gausel¹, Kjetil Fagerholt¹, Jørgen G. Rakke², and Harilaos N. Psaraftis³

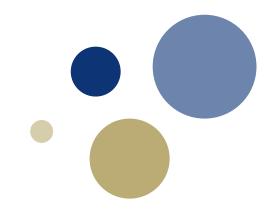
- 1) Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology
- 2) Department of Marine Technology, Norwegian University of Science and Technology
- 3) Department of Transport, Technical University of Denmark

Outline


- Introduction to IMO, MARPOL & Emission Control Areas
- Speed optimization in shipping
- Problems and model
- Results
- Concluding remarks

IMO & MARPOL

- The International Maritime Organization (IMO) is a specialized agency of the United Nations, responsible for the safety and security of shipping and the prevention of maritime pollution by ships.
 - International Convention for the Safety of Life at Sea (SOLAS)
 - International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW)
 - International Convention for the Prevention of Pollution from Ships (MARPOL)
- MARPOL contains six technical annexes
- Annex VI seeks to minimize airborne emissions from ships
 - In particular it introduces stricter regulations for emissions of $\mathrm{SO}_{\mathrm{x}},\,\mathrm{NO}_{\mathrm{x}}$ and PM


Limits on sulphur content in fuel

ECA compliance options

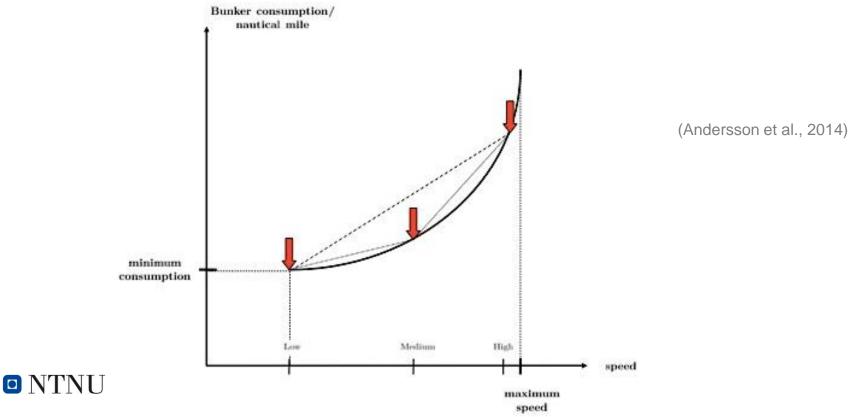
- Fuel switching
 - Use different fuels when sailing inside and outside ECAs
 - Limit on sulphur content in fuel
 - High price difference between heavy fuel oil (HFO) and marine gasoline oil (MGO)
- Install scrubber
 - Clean exhausts gasses
 - No limit on sulphur content in fuel used
 - High installation costs, and unavailability period for vessels.
- LNG machinery system
 - LNG has very low sulphur content
 - Machinery systems demand space consuming infrastructure → Reduced cargo space
 - High capital investments

Speed optimization in shipping

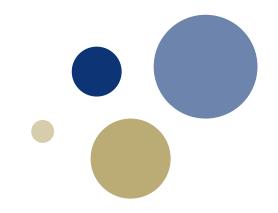
Speed optimization in shipping

- Speed optimization in shipping is an important topic
 - Fuel costs constitutes an important part of total operating costs
 - Lately fuel prices has increased and cargo rates has decreased
 → decreasing margins
 - Significant cost reductions by optimizing speed
 - Norstad et al. (2011) indicate that fuel cost savings can be as high as 40% compared to using a standard charter party speed

Speed optimization in shipping


• Fuel consumption is a non-linear function of speed

$$f = \left[F^{R,main} \cdot \left(\frac{v_i}{V_0}\right)^3 + F^{R,aux}\right] \cdot s$$

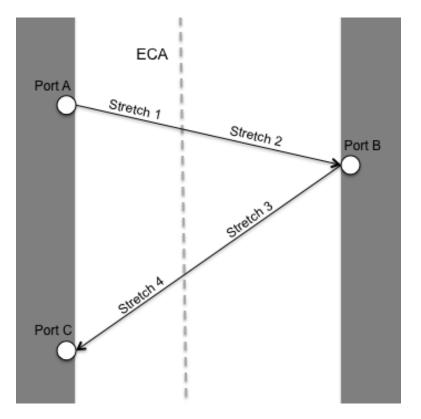

(Doudnikoff and Lacoste, 2014)

9

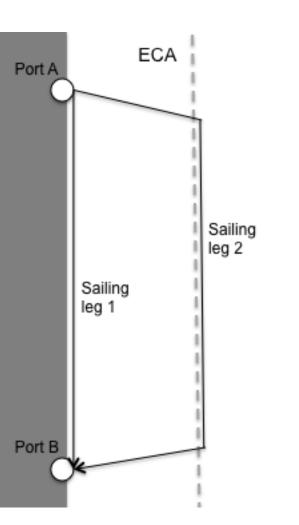
• *f* is a convex function and may be linearized

Problem description

Problem description - Idea


- ECA regulations will affect a shipping company's costs and it may take actions to reduce these costs that are counterproductive to the MARPOL Annex VI's goals.
 - When considering one fuel type, minimization of fuel cost and reduction of emissions are both results of minimizing the total fuel consumption
 - Introducing ECAs does not necessarily give the same environmental incentives to the shipping companies as minimizing the total fuel consumption is not equivalent to minimizing fuel costs.

Problem description - Problems


- Problems:
 - P1: Speed optimization with one leg option
 - P2: Speed optimization and alternative leg options

Problem	Sequence	Legs	Speed
P1	F	F	V
P2	F	V	V

Problem P1

Problem P2

NTNU Norwegian University of Science and Technology

Problem description - Model

Sets

tj

 Z_{jr}

В	Set of fuels
J	Set of sequenced legs, legs in J^b have stretch using fuel $b \in B$
R _i	Set of alternative sailing legs for each of the legs $j \in J$
V	Set of speed alternatives

Parameters

T ^{ECA}	Sailing time within ECA along sailing leg alternative r on leg j with speed alternative v
T_{jrv}^{N}	Sailing time outside ECA along sailing leg alternative r on leg j with speed alternative v
T_j^{MIN} , T_j^{MAX}	Lower and upper time limit for starting leg <i>j</i>
F ^{ECA}	Fuel consumption within ECA along sailing leg alternative r on leg j with speed alternative $ u$
F_{jrv}^{N}	Fuel consumption outside ECA along sailing leg alternative r on leg j with speed alternative v
P_b	The price per ton of fuel type <i>b</i>

Decision variables

x_{irv}^{ECA}	Weight of speed alternative v v	within ECA on leg j with alternative r
· (r)	0 1	0)

 x_{jrv}^{N} Weight of speed alternative v outside ECA on leg j with alternative r

Start time on leg *j*

Binary variable, takes the value 1 if sailing leg alternative r is chosen for leg j, and 0 otherwise

lacksquare Norwegian University of Science and Technology

Problem description - Model

Model

$$\min \sum_{b \in B} P_b \cdot \sum_{j \in J^b} \sum_{r \in R_j} \sum_{v \in V} F_{jrv} \cdot x_{jrv}$$

$$t_j \ge t_{j-1} + \sum_{v \in V} \sum_{r \in R_j} (T_{jrv}^{ECA} \cdot x_{jrv}^{ECA} + T_{jrv}^N \cdot x_{jrv}^N)$$

$$j \in J, r \in R_j$$

$$\sum_{v \in V} x_{jrv}^{ECA} = z_{jr}$$

$$j \in J, r \in R_j$$

$$(3)$$

$$\sum_{v \in V} x_{jrv}^{N} = z_{jr}$$

$$j \in J, r \in R_j$$

$$(4)$$

$$\sum_{r \in R_j} z_{jr} = 1$$

$$j \in J$$

$$(5)$$

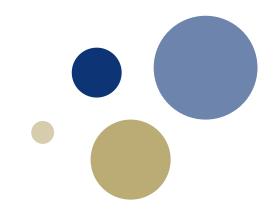
$$T_j^{MIN} \le t_j \le T_j^{MAX}$$

$$j \in J$$

$$(6)$$

$$z_{jr} \in \{0,1\}$$

$$j \in J, r \in R_j$$


$$(7)$$

$$y \in J, r \in R_j, v \in V$$

$$(8)$$

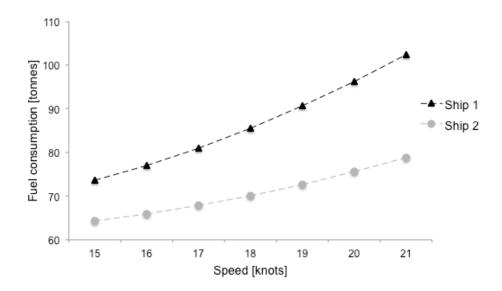
D NTNU Norwegian University of Science and Technology

Computational study

Computational study - Cases

Problem	Case	Route	
	C1.1	Gothenburg – Le Havre – Santander – Livorno	
P1	C1.2	San Francisco – Hueneme – Honolulu	
	C2.1	Bremerhaven – Antwerp – Halifax – Brunswick	
	C2.2	Yokohama – Prince Rupert – Long Beach – Lazaro Cardenas	
	C2.3a	Kristiansand – Santander	
	C2.3b	Flekkefjord – Santander	
	C2.3c	Stavanger – Santander	
P2	C2.3d	Bergen – Santander	
	C2.3e	Florø – Santander	
	C2.4a	Singapore – Southampton	
	C2.4b	Cilcap – Southampton	
	C2.4c	Dampier – Southampton	

Computational study - assumptions


 Fixed fuel price – based on average prices in Rotterdam, Holland and Houston, USA

Scenario name	ECA	Non-ECA
No ECA scenario	590	590
Standard scenario	920	590

 Additional price scenarios investigated to evaluate impact of future prices

Computational study - assumptions

• Fuel consumption

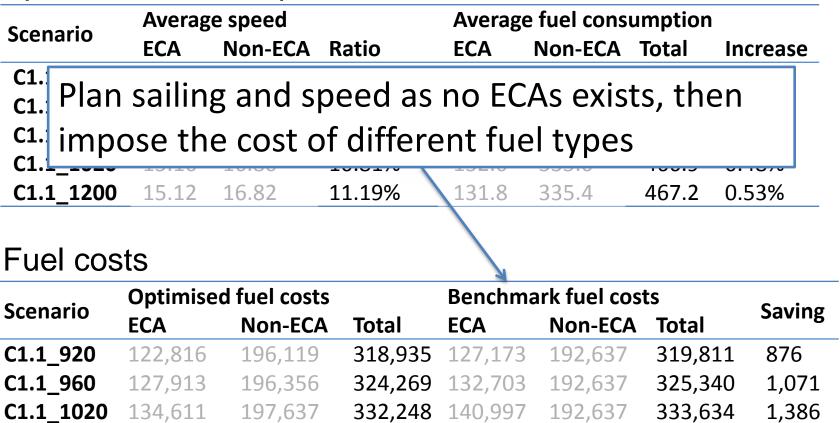
Computational study - assumptions

- Generation of time windows
 - Based on randomly sampled sailing speed between ports
 - Sailing speed sampled from the range [17,19] knots
 - Time windows generated for each port j :
 - \hat{t} is the width of the time window in days
 - T_i is the visit time given the sampled speed
 - $[T_j \hat{t}, T_j + \hat{t}]$
 - Different instances are created for each price scenario

Results

Case C1.1

Leg	ECA	Non-ECA	Total
Gothenburg – Le Havre	680	0	680
Le Havre – Santander	210	345	555
Santander – Livorno	0	1,738	1,738
Total distance	890	2,083	2,973


• $\hat{t} \in \{0.25, 0.5, 0.75, 1\}$

Case C1.1

C1.1 1200

Speed and consumption

356.015

165,878

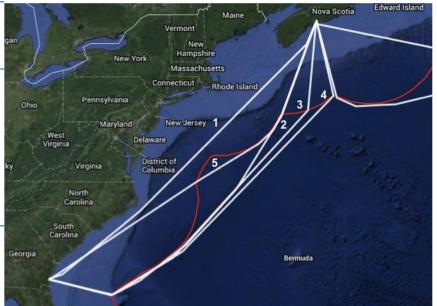
192,637

197,895

158,120

2,501

358,516


Case C1.1

Emissions

Scenario	CO ₂ e	missions	SO _x en	nissions				
Scenario	Tonnes	Increase	Kilograms	Decrease				
C1.1_590	1 473.2	-	251.0	-				
C1.1_920	1 476.9	0.25%	182.2	-27.41%				
C1.1_960	1 477.4	0.28%	182.4	-27.33%				
C1.1_1020	1 480.2	0.48%	183.5	-26.87%				
C1.1_1200	1 481.0	0.53%	183.5	-26.87%				
	No ECA	No ECAs – use HFO in all areas						

		Distan	Distance		
Leg	Leg option	ECA	Non- ECA	Total	
Bremerhaven – Antwerp	1	306	0	306	
Antwerp – Halifax	1	772	2,101	2,873	
Halifax – Brunswick	1	1,186	0	1,186	
	2	514	831	1,345	
	3	476	890	1,366	
	4	445	987	1,432	
	5	879	352	1,231	
Antwerp – Halifax	1 1 2 3 4	772 1,186 514 476 445	0 2,101 0 831 890 987	2,873 1,186 1,345 1,366 1,432	

• $\hat{t} \in \{0.5, 1, 1.5, 2, 2.5\}$

Choice of leg option

		Chosen		Distance			beed
Situation	Leg	leg option	ECA	Non- ECA	Total	ECA	Non- ECA
C2.1_920_TW_0.5	3	5	879	352	1,231	16.0	17.4
	Total		1,957	2,453	4,410		
C2.1_920_TW_1	3	5	879	352	1,231	16.0	17.0
	Total		1,957	2,453	4,410		
C2.1_920_TW_1.5	3	5	879	352	1,231	15.0	16.0
	Total		1,957	2,453	4,410		
C2.1_920_TW_2	3	2	514	831	1,345	15.0	15.0
	Total		1,592	2,932	4,524		
C2.1_920_TW_2.5	3	3	476	890	1,366	15.0	15.0
	Total		1,554	2,991	4,545		

Speed and consumption

•			•					
	Average speed			Average distances				
Scenario	ECA	Non-	Ratio	ECA	Non-	Total	Ratio	
		ECA			ECA			
C2.1_590	15.7	15.7	0.00%	2,264	2,101	4,365	-7.20%	
C2.1_760	15.6	15.8	1.85%	2,080	2,312	4,392	11.17%	
C2.1_900	15.3	16.3	6.62%	1,811	2,645	4,456	46.03%	
C2.1_920	15.3	16.3	6.62%	1,803	2,656	4,460	47.30%	
C2.1_970	15.4	16.4	6.59%	1,657	2,848	4,505	71.84%	
C2.1_1020	15.2	16.6	9.50%	1,584	2,944	4,528	85.80%	
C2.1_1200	15.2	16.7	9.63%	1,577	2,956	4,532	87.44%	
C2.1_2000	15.0	17.2	14.75%	1,504	3,115	4,619	107.05%	
C2.1_2000	15.0	17.2	14.75%	1,504	3,115	4,619	1	

Fuel costs

Scenario	Optimised	d fuel costs		Benchma	Coving		
Scenario	ECA	Non-ECA	Total	ECA	Non-ECA	Total	Saving
C2.1_760	239,421	208,549	447,970	261,507	188,480	449,988	2,018
C2.1_900	243,344	244,018	487,362	309,679	188,480	498,160	10,797
C2.1_920	247,723	245,043	492,766	316,561	188,480	505,042	12,276
C2.1_970	241,332	264,590	505,922	333,766	188,480	522,246	16,324
C2.1_1020	240,097	277,954	518,051	350,970	188,480	539,450	21,400
C2.1_1200	281,124	279,248	560,373	412,906	188,480	601,386	41,014
C2.1_2000	442,876	302,596	745,472	688,176	188,480	876,657	131,185

Comparison of Model P1 and P2

Decisions	Fue	l consumpti	ion		Fuel costs		
Decisions	ECA	Non-ECA	Total	USD	Difference	Saving	
Benchmark	344.1	319.5	663.5	505,042	-	-	
P1 Optimised	337.4	327.5	664.9	503,653	-0.27%	1,389	
P2 Optimised	269.3	415.3	684.6	492,766	-2.43%	12,276	

Desisions	CO ₂ er	nissions	SO _x emissions				
Decisions	Total	Difference	ECA	Non-ECA	Total	Difference	
Benchmark	2,103	-	68.8	172.5	241.3	-	
P1 Optimised	2,107	0.21%	67.5	176.9	244.3	1.25%	
P2 Optimised	2,170	3.17%	53.9	224.3	278.1	15.25%	

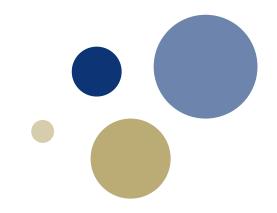
		lag		Distanc	e
Case	Leg	Leg option	ECA	Non-	Total
2.2-	Kristienen de Contourder	1	701	ECA	1 1 2 1
2.3a	Kristiansand – Santander	1	761	360	1,121
		2	395	1,025	1,420
2.3b	Flekkefjord – Santander	1	760	361	1,121
		2	340	1,030	1,370
		3	275	1,400	1,675
2.3c	Stavanger – Santander	1	790	362	1,152
		2	310	1,065	1,375
		3	230	1,430	1,660
2.3d	Bergen – Santander	1	872	365	1,237
		2	277	1,020	1,297
		3	120	1,420	1,540
2.3e	Florø – Santander	1	927	365	1,292
		2	307	1,022	1,329
		3	34	1,425	1,459

• $\hat{t} \in \{0.25, 0.5, 0.75, 1, 1.25, 1.5\}$

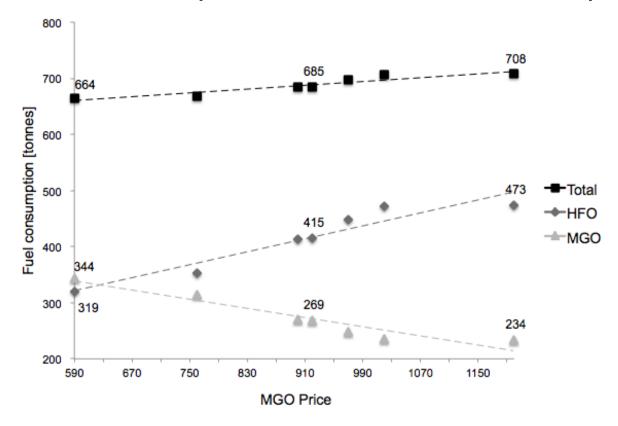
Speed and consumption

	Α	verage speed	3	Average distances				
Scenario	ECA	Non-ECA	Ratio	ECA	Non-ECA	Total	Difference	
C2.3c_590	15.44	15.44	0.00%	783	363	1,146	-	
C2.3c_920	15.27	15.84	3.64%	625	597	1,222	6.66%	
C2.3d_590	15.49	15.49	0.00%	872	365	1,237	-	
C2.3d_920	15.36	15.96	3.79%	277	1,020	1,297	4.85%	
C2.3e_590	15.52	15.52	0.00%	927	365	1,292	-	
C2.3e_920	15.28	15.86	3.73%	216	1,156	1,372	6.22%	

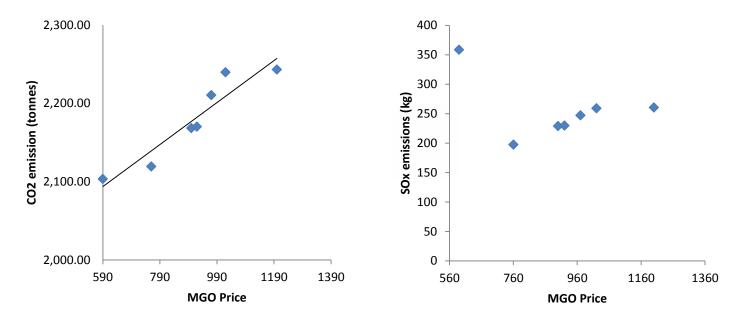
Scenario		Average fuel consumption								
Scenario	ECA Difference Non-ECA Di		Difference	Total	Difference					
C2.3c_590	117.8	-	54.6	-	172.4	-				
C2.3c_920	93.6	-20.51%	90.3	65.40%	183.9	6.70%				
C2.3d_590	131.5	-	55.0	-	186.5	-				
C2.3d_920	41.5	-68.43%	157.8	186.62%	199.3	6.83%				
C2.3e_590	140.0	-	55.1	-	195.1	-				
C2.3e_920	32.4	-76.84%	177.0	221.11%	209.4	7.33%				


NTNU Norwegian University of Science and Technology

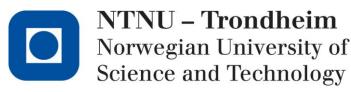
Comparison to benchmark

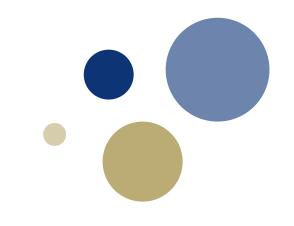

Sconaria	Opti	imised fuel	costs	Bench	Covina		
Scenario	ECA	Non-ECA	Total	ECA	Non-ECA	Total	Saving
C2.3c_920	86,120	53,279	139,399	108,343	32,211	140,555	1,156
C2.3d_920	38,195	92,073	131,267	120,970	32,473	153,442	22,175
C2.3e_920	29,826	104,416	134,242	128,777	32,517	161,295	27,052

Scenario	CO ₂ ei	missions	SO _x em	SO _x emissions		
	Tonnes	Difference	Kilograms	Difference		
C2.3c_590	546.4	-	93.1	-		
C2.3c_920	583.0	6.70%	50.6	-45.60%		
C2.3d_590	591.3	-	100.7	-		
C2.3d_920	631.7	6.83%	86.0	-14.60%		
C2.3e_590	618.4	-	105.3	-		
C2.3e_920	663.8	7.33%	96.2	-8.67%		



Fuel consumption as a function of MGO price




Global emissions as a function of MGO price

- Our computational study shows that in order to reduce cost, shipping companies may
 - increase speed outside ECAs
 - sail around the ECAs.
 - or both
- This leads to higher total CO2 emissions

Thank you. Questions?

Maritime Routing and Speed Optimization with Emission Control Area Regulations

Nora Gausel¹, Kjetil Fagerholt¹, Jørgen G. Rakke², and Harilaos N. Psaraftis³

- 1) Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology
- 2) Department of Marine Technology, Norwegian University of Science and Technology
- 3) Department of Transport, Technical University of Denmark