

A matheuristic for the liner shipping network design problem with transit times

Berit Dangaard Brouer, Guy Desaulniers, Christian Vad Karsten and David Pisinger

DTU Management Engineering & GERAD

June 2nd 2014

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{dx_i}{i}$

DTU Management Engineering Department of Management Engineering

Liner shipping networks

Urban transit network

Commuters

VS.

Why is liner shipping important?

Integrated part of global supply chains

High value goods

Liner shipping network design problem (LSNDP)

Constructing a set of cyclic routes with a fixed frequency

Port	Arrives	Departs	Transit	
Felixstowe, United Kingdom	TUE	WED		
Zeebrugge, Belgium	THU	THU	1	
Rotterdam, Netherlands	SAT	SAT	3	
Bremerhaven, Germany	SUN	MON	5	
Wilhelmshaven, Germany	MON	TUE	6	
Suez Canal, Egypt	TUE	WED	13	
Colombo, Sri Lanka	THU	THU	22	
Singapore, Singapore	WED	THU	28	
Yantian, China	WED	THU	35	
Kobe, Japan	TUE	TUE	41	
Nagoya, Japan	WED	THU	42	
Yokohama, Japan	FRI	FBI	44	

June 2nd 2014

A transportation network with colossal costs

Cost of the AE1 schedule (weekly)

- 10 vessels
- Weekly cost (Million \$)
- Vessel sizes in 20 foot container units (TEU Twenty Foot Equivalent)

	8.400 TEU (10 vessels)	15.000 TEU (10 vessels)			
Port Call Cost	\$0.47	\$0.75			
Canal Cost	\$1.26	\$2.07			
Vessel Cost	\$2.45	\$3.85			
Fuel Cost	\$3.15	\$4.86			
Total Cost	\$7.35	\$11.54			
Calculations are based on distances and cost of LINER-LIB 2012 assuming a					

weekly frequency.

Recent literature on LSNDP

- Agarwal & Ergun (2008)
- Alvarez (2009)
- Blander Reinhardt & Pisinger (2012)
- Brouer et al. (2014)
- Brouer, Desaulniers, Pisinger (2014)

General trend

- Complex mathematical models
- Two tiers:
 - Route construction
 - 2 Multi commodity flow problem
- Solved heuristically except for Blander Reinhardt & Pisinger (2012)

What about the transit times?

Effect of imposing transit time

Instance	Trans% (MCF)	Trans% (MCF-TT)
Baltic	92.1	92.1
WAF	94.9	74.5
Med.	95.3	71.2
Pacific	91.1	58.8
WorldSmall	91.3	60.4
AsiaEurope	91.2	76.1

- The route network is optimized for cost/capacity utilization
- The percentage of cargo flowed differs significantly
 - if solving the original multi commodity flow problem (MCF)
 - OR the MCF with transit time restrictions (MCF-TT)

Towards competitive liner shipping network design models

Transit time is a competition factor

- Maximizing revenue means optimizing the capacity utilization
- Results in longer port call sequences
- Transit time likely to increase
- Transit time is crucial for the commercial value of a product

Literature on LSNDP-TT limited

- Wang & Meng 2014 (LSNDPD) [8]
- Non-linear, non-convex MIP model
- Coupling a service route with a cargo delivery pattern
- Shortcoming: No support for transhipments
- Karsten et. al. 2014 on time constrained multi commodity flow problem (MCF-TT) [7]
- Working paper

A reference model for LSNDP

$$(VRD) \quad \text{minimize} \quad Z = \sum_{r \in \mathbf{R}} f^{v_r} Y^r + \sum_{v \in \mathbf{V}} \tilde{f}^v \left(z^v - \sum_{r \in \mathbf{R}: v_r = v} Y^r \right) + \qquad (1a)$$

$$\sum_{r \in \mathbf{R}} m_r Y^r \sum_{(i,j) \in \mathbf{E}_r} \left(eh^{v_r} p_j^{v_r} + eg^{v_r s_r} I_{ij}^{v_r} + d_j^{v_r} + a_{ij}^{v_r} \right) +$$
(1b)

$$\sum_{(o,d)\in\mathbf{G}} \left(\tilde{q}_{od} O_{od} - q_{od} \sum_{r\in\mathbf{R}} V_{od}^r \right) + \qquad (1c)$$

 $\sum_{r \in \mathbf{R}} \sum_{\substack{(h,i,j) \in \Omega_r}} \left(u_i \left(W_{(hi)}^r + \sum_{\substack{d \in \mathbf{P} \\ d \neq i}} V_{id}^r \right) + t_i \sum_{\substack{d \in \mathbf{P} \\ d \neq i}} \sum_{\substack{s \in \mathbf{R} \\ d \neq i}} U_{(hi)d}^{rs} \right)$ (1d)

A reference model for LSNDP (cont.)

$$\begin{aligned} X_{(hi)d}^{r} + V_{id}^{r} + \sum_{\substack{s \in \mathbf{R}:\\(k,i,l) \in \Omega_{s} \\ s \neq r}} U_{(ki)d}^{sr} = X_{(ij)d}^{r} + \sum_{\substack{s \in \mathbf{R}:\\s \neq r}} U_{(hi)d}^{rs} \\ r \in \mathbf{R}, (h,i,j) \in \Omega_{r}, d \in \mathbf{P}i \neq dh \neq d \end{aligned}$$
(2)

$$X_{(ij)j}^r = W_{(ij)}^r \quad (i,j) \in \mathbf{E}_r \quad r \in \mathbf{R}$$
(3)

$$O_{od} + \sum_{r \in \mathbf{R}} V_{od}^r = k_{od} \quad o, d \in \mathbf{G}$$
(4)

$$\sum_{d \in \mathbf{P}} X_{ijd}^r \le c^{\mathbf{v}_r} \cdot m_r \cdot Y^r \quad r \in \mathbf{R} \quad (i,j) \in \mathbf{E}_r \tag{5}$$

$$\sum_{r \in \mathbf{R}: v_r = v} Y^r \le z^v \quad v \in \mathbf{V}$$
(6)

$$\begin{aligned} X_{(ij)d}^{r}, U_{(ij)d}^{rs}, W_{id}^{r} \in \mathbb{R}^{+} & r, s \in \mathbf{R}, r \neq s \quad (i, j) \in \mathbf{E}_{r} \quad d \in \mathbf{P} \quad (8) \\ O_{od}, V_{od}^{r} \in \mathbb{R}^{+} & r \in \mathbf{R} \quad o, d \in \mathbf{G} \quad (9) \\ Y^{r} \in \mathbb{Z}^{+} & r \in \mathbf{R} \quad (10) \end{aligned}$$

(7)

Arc flow model of the multicommodity flow problem

Figure: The flow for commodity (a,d) (blue arcs) constitute a tree of flow

Path flow formulation of the multicommodity flow problem

Figure: The flow tree for commodity (a,d) may be seen as two distinct paths

$$(VRD) \quad \text{minimize} \quad Z = \sum_{r \in \mathbf{R}} f^{v_r} Y^r + \sum_{v \in \mathbf{V}} \tilde{f}^v \left(z^v - \sum_{r \in \mathbf{R}: v_r = v} Y^r \right) +$$
(11a)

$$\sum_{r \in \mathbf{R}} m_r Y^r \sum_{(i,j) \in \mathbf{E}_r} \left(eh^{\mathbf{v}_r} p_j^{\mathbf{v}_r} + eg^{\mathbf{v}_r s_r} l_{ij}^{\mathbf{v}_r} + d_j^{\mathbf{v}_r} + a_{ij}^{\mathbf{v}_r} \right) +$$
(11b)

$$\sum_{g \in \mathbf{G}} \left(\tilde{q}_g O_g - q_g \sum_{\rho \in P_g} x^{\rho} \right) +$$
(11c)

$$\sum_{g \in \mathbf{G}} \sum_{p \in P_g} c_p x^p \qquad (11d)$$

Route 2014

(LSNDP-TT) continued

$$O_g + \sum_{\rho \in P_g} x^{\rho} = k_g \quad g \in \mathbf{G}$$
 (12)

$$\sum_{\boldsymbol{g}\in\boldsymbol{\mathsf{G}}}\sum_{\boldsymbol{p}\in\boldsymbol{P}_{\boldsymbol{\mathcal{G}}}} \delta_{ij}^{\boldsymbol{\rho}} \boldsymbol{x}^{\boldsymbol{p}} \leq \boldsymbol{c}^{\boldsymbol{v}_{\boldsymbol{r}}} \cdot \boldsymbol{m}_{\boldsymbol{r}} \cdot \boldsymbol{Y}^{\boldsymbol{r}} \quad \boldsymbol{r}\in\boldsymbol{\mathsf{R}} \quad (i,j)\in\boldsymbol{\mathsf{E}}_{\boldsymbol{r}}$$
(13)

$$\sum_{r \in \mathbf{R}: v_r = v} Y^r \le z^v \quad v \in \mathbf{V}$$
(14)

$$x^{p} \in \mathbb{R}^{+}$$
 $p \in P_{g}, g \in \mathbf{G}$ (16)
 $O_{g} \in \mathbb{R}^{+}$ $g \in \mathbf{G}$ (17)

$$Y^r \in \mathbb{Z}^+$$
 $r \in \mathbb{R}$ (18)

(15)

(Yet another) complex formulation

- Exponential number of route variables
- Exponential number of path variables

Mostly applicable for heuristic methods

Nested column generation?

Observation # 2

Easy to add transit time restrictions

- Path flow solved by column generation
- Transit time restrictions are in the subproblem
- Resource constrained shortest path problem

Easy evaluation of a new solution

- Heuristic context
- Move \Rightarrow changes a subset of edges
- Invalidated path variables removed
- Warm start with a nearly optimal basis

A composite matheuristic for the LSNDP-TT

Construction heuristic with multiple restarts

- Improvement heuristic
- Reinsertion heuristic
- Perturbation heuristic

Construction heuristic

LSNDP interpreted as a multiple quadratic knapsack problem.

P_{ij}=revenue_{ij}-dist_{ij}

- Greedy algorithm
- Multiple restarts

Improvement heuristic

Fine tuning each service

- IP program as neighbourhood
- Decision variables: insert/ remove port calls, # vessels assigned

Insertion of port calls

Figure: Blue nodes are evaluated for insertion - variables γ_i

- Estimation of distance increase (Δ_i^s)
- Estimation of profit (Θ_i^s)

Removal of port calls

Figure: Red nodes are evaluated for removal - variables λ_i

- Estimation of distance decrease (Γ_i^s)
- Estimation of profit (Υ_i^s)

IP for improvement heuristic

DTU
=

max	$\sum_{i\in\mathbb{N}^{S}}\Theta_{i}\gamma_{i}+\sum_{i\in\mathbb{P}^{S}}\Upsilon_{i}\lambda_{i}-C_{V}^{e(s)}\omega_{s}$		(19)
subject to:	$\frac{D_{s}}{K_{s}} + \sum_{i \in P^{s}} B_{\rho(i)} + \sum_{i \in N^{s}} (\frac{\Delta_{i}^{s}}{K_{s}} + B_{\rho})$	$_{(i)})\gamma_{i} - \sum_{i \in \mathcal{P}^{S}} (\frac{\Gamma_{i}^{S}}{K_{S}} + B_{\mathcal{P}(i)})\lambda_{i} \leq 24 \cdot 7 \cdot (n_{S}^{\mathcal{P}} + \omega_{S})$	(20)
	$\omega_{s} \leq M_{e(s)}$		(21)
	$\sum_{i\in N^S} \gamma_i \leq I_S$		(22)
	$\sum_{i\in P^{S}}\lambda_{i}\leq R_{s}$		(23)
	$\sum_{j \in L_j} \lambda_j \leq L_i (1-\gamma_i)$	$\forall i \in N^{S}$	(24)
	$\sum_{j \in L_j} \lambda_j \leq L_i (1 - \lambda_i)$	$\forall i \in P^s$	(25)
	$\lambda_i \in \{0,1\}$	$\forall i \in P^s$	(26)
	$\gamma_i \in \{0,1\}$	$\forall i \in N^{S}$	(27)
	$\omega_{s} \in \mathbb{Z}$		(28)

IP for improvement heuristic

n	т	ш
υ	I.	U
1		2
÷		ž
		-

max	est. $ of insertion + est. $ of removal - $ of $	est. vessel adj	ustment	(29)
subject to:	Current duration + additional time for insert	tion-saved tim	e from remova	$ls \leq (30)$
				(30)
	num weeks of assigned vessels +vessel adjust	stment		
	vessel adjustment \leq vessels available			(31)
	Max insertions $\leq I_s$			(32)
	Max removals $\leq R_s$			(33)
	if insertion of i lock related port calls		$\forall i \in N^s$	(34)
	if removal of i lock related port calls		$\forall i \in P^s$	(35)
	$\lambda_i \in \{0,1\}$	$\forall i \in P^s$		(36)
	$\gamma_i \in \{0,1\}$	$\forall i \in N^s$		(37)
	$\omega_{s} \in \mathbb{Z}$			(38)

Adjusting for transit time restrictions

Figure: Insertions/removals affect transit time of current flow

Commodity g_{AD} has a maximum transit time of 48 hours

• Insertion of γ_B will make path variable x_{AD} infeasible

Adjusting the IP to accound for transit time

$$\max \sum_{i \in N^{s}} \Theta_{i} \gamma_{i} + \sum_{i \in P^{s}} \Upsilon_{i} \lambda_{i} - C_{V}^{e(s)} \omega_{s} - \zeta_{x} \rho_{x}$$
(39)
subject to:
$$\sum_{i \in N^{x}} (\frac{\Delta_{i}^{s}}{K_{s}} + B_{p(i)}) \gamma_{i} - \sum_{i \in P^{x}} (\frac{\Gamma_{i}^{s}}{X_{s}} + B_{p(i)}) \lambda_{i} - UB \rho_{x} \leq s_{x}$$
(40)
$$\rho_{x} \in \{0, 1\}$$
$$\forall x \in X^{s}$$
(41)
(42)

- ζ_x : Estimated penalty for cargo lost due to transit time
- s_x: Slacktime of path variable x
- (40): Estimate transit time violations for path variable *x* of commodity *g*

Reinsertion heuristic

Figure: Reinsertion of node A to form a butterfly route

- Red edge is fully utilized by multiple commodities e.g. g_{AF}, g_{AG}
- Commodity g_{AF} is not transported in full
- Reinsertion (blue edges) allows transport of entire g_{AF} and decreases transit time of e.g. g_{DA}, g_{AF}, g_{AG}

Alter composition of services

- Search solutions with a different number of services of each vessel class
- Remove services with lowest utilization percentage
- Apply construction heuristic on excess fleet

Overview of the matheuristic for the LSNDP

пти	Ĺ
DIU	J
	•
	•
	۲

Require: An instance (P, K, E, D) of the LSNDP 1: Apply construction heuristic to obtain an initial solution <i>x</i> .
2: Set the best known solution $x^* = x$.
3: Set the iteration counter $iter = 0$.
4: while no stopping criterion is met do
5: Search for an improved solution x' using the improvement heuristic.
6: if Successful then
$\mathbf{Z}: \qquad \text{Set } x \leftarrow x'$
8: Possibly update best known solution to current: $x^* \leftarrow x$
9: $iter \leftarrow iter + 1$
10: if iter $mod 4 = 0$ then
11: Apply reinsertion heuristic to yield a new solution x' with promising butterfly routes.
12: if Successful then
13: Set $x \leftarrow x'$
14: Possibly update best known solution to current: $x^* \leftarrow x$
15: if iter mod $10 = 0$ then
16: Apply perturbation to obtain a solution x' with a different service composition.
17: Set $x \leftarrow x'$
18: Possibly update best known solution to current: $x^* \leftarrow x$
19: return (x*)

Computational results - LINER-LIB2012

Instance	P	G	E	V
Baltic	12	22	2	5
WAF	19	38	2	42
Mediterranean	39	369	3	20
Pacific	45	722	4	102
WorldSmall	47	1764	6	263
AsiaEurope	111	4000	6	176

LINER-LIB2012 - $|\mathbf{P}|$: Number of ports; $|\mathbf{G}|$: Number of commodities; $|\mathbf{E}|$: Number of vessel classes; \mathbf{v} : Total number of vessels in base capacitated case

The very first results for LSNDP-TT

Instance		Z	Depl%	Trans%	Time	Max time
Baltic	Base	-5.42 · 10 ⁶	100.0	92.1	93.74	300
WAF	Base	$-1.01 \cdot 10^{8}$	95.2	94.1	210.9	900
Mediterranean	Base	5.6 · 10 ⁷	85	81.1	387.5	1800
Pacific	Base	3.03 · 10 ⁸	77	71.6	3601.1	3600
WorldSmall	Base	$-3.60 \cdot 10^{8}$	90.5	79.6	10413.4	10400
AsiaEurope	Base	-3.85 · 10 ⁸	91.5	80.7	14443.1	14400

Table: Best of 5 runs on an Intel(R) Xeon(R) X5550 CPU at 2.67GHz with 24 GB RAM. Objective value (Z); percentage of fleet deployed (**Depl**%); percentage of total cargo volume transported (**Trans**%); execution time in CPU seconds (**Time**) and maximum execution time allowed (**max time**)

Promising results

4 of 6 instances profitable The fleet deployment percentage is very low Perturbation heuristic needs additional work

- Reference model formulated with a path flow formulation
- Transit time restrictions easily imposed
- Extend matheuristic to consider transit time restrictions
- Investigate the low fleet deployment
- Ideas are most welcome!

Bibliography I

[K. Rana and R.G. Vickson]

"Routing container Ships Using Lagrangian Relaxation and Decomposition" Transportation Science 25, 201-214 (1991)

[L. Blander Reinhardt and D. Pisinger]

"A branch and cut algorithm for the container shipping network design problem" Flexible Services and Manufacturing Journal, 24, 3, p. 349-374 (2012)

[R. Agarwal and O. Ergun]

"Ship Scheduling and Network Design for Cargo routing in Liner Shipping" *Transportation Science* 42, 175-196 (2008).

[J.F. Alvarez]

"Joint Routing and Deployment of a Fleet of Container Vessels" Maritime Economics and Logistics 11, 186-208 (2009)

[B. Dangaard Brouer, J. F. Alvarez, C.E.M. Plum, D. Pisinger and M.M. Sigurd]

"A base integer programming model and benchmark suite for liner shipping network design" *Transportation Research* 48,2, p. 281-312 (2014)

[Brouer, B.D and Desaulniers, G. and Pisinger, D.],

" matheuristic for the liner shipping network design problem" GERAD/DTU Management, Working paper, (2014)

[Karsten, C.V. and Pisinger, D. and Ropke, S. and B.D. Brouer]

"The time constrained multi-commodity network flow problem and its application to liner shipping network design" DTU Management, Working paper, (2014)

Bibliography II

[Wang, S. and Meng Q.]

"Liner shipping network design with deadlines" Computers and Operations Research, 41, p. 140-149 (2014)

[World Shipping Council],

"The liner shipping industry and carbon emissions policy" www.shippingandco2.org/LinerShippingandCO2EmissionsPolicySeptember.pdf,(2011)

[T. E. Notteboom]

"The Time Factor in Liner Shipping Services, Maritime Economics and Logistics vol. 8,1, p. 19-39,(2006)

Profiling the code

- A larger part of the execution time is spent evaluating a solution
- Primarily due to increased complexity of the MCF
- Smaller percentage of time used in the perturbation heuristic

Profiling the code

- A larger part of the execution time is spent evaluating a solution
- Primarily due to increased complexity of the MCF
- Smaller percentage of time used in the perturbation heuristic

BUT!

Instanc	e	Z	Depl%	Trans%	Time (CPU sec.)
Baltic	t=300	-5.42 · 10 ⁶	100.0	92.1	93.74
WAF	t=900	$-1.01 \cdot 10^{8}$	95.2	94.1	210.9
Mediterranean	t=1800	5.6 · 10 ⁷	85	81.1	387.5
Pacific	t=3600	3.03 · 10 ⁸	77.0	71.6	3601.1
raciiic	t=5400	2.83 · 10 ⁸	79.0	74.0	5402.0
WorldSmall	t=10400	$-3.60 \cdot 10^{8}$	90.5	79.6	10413.4
wondomai	t=18000	$-4.09 \cdot 10^{8}$	91.6	79.6	18013.9
AsiaEuropa	t=14400	-3.85 · 10 ⁸	91.5	80.7	14443.1
AsiaLurope	t=21600	$-3.85 \cdot 10^{8}$	91.5	80.7	21641

Increasing allowed execution timetime does not make a big difference!

The matheuristic on LSNDP and LSNDP-TT

Instance			Z	Depl%	Trans%	Time (CPU sec.)
Baltic	Base	LSNDP	8.32 · 10 ⁵	100.0	85.7	8.7
		LSNDP-TT	$-5.42 \cdot 10^{6}$	100.0	92.1	93.74
WAF	Base	LSNDP	$-1.38 \cdot 10^{8}$	95.2	94.9	58.8
		LSNDP-TT	-1.01 · 10 ⁸	95.2	94.1	210.9
Mediterranean	Base	LSNDP	3.41 · 10 ⁷	100	92.9	172.0
		LSNDP-TT	5.6 · 10 ⁷	85	81.1	387.5
Pacific	Base	LSNDP	$-6.19 \cdot 10^{7}$	96.0	94.8	3601.8
		LSNDP-TT	3.03 · 10 ⁸	77	71.6	3601.1
WorldSmall	Base	LSNDP	$-1.32 \cdot 10^{9}$	98.9	94.3	10447.2
		LSNDP-TT	$-3.60 \cdot 10^{8}$	90.5	79.6	10413.4
AsiaEurope	Base	LSNDP	$-6.75 \cdot 10^{8}$	98.9	92.4	14578.4
		LSNDP-TT	-3.85 · 10 ⁸	91.5	80.7	14443.1

Table: Results from matheuristic with LSNDP model and LSNDP-TT extension using LINER-LIB 2012. Z: Objective value (Note: Minimization); Depl% percentage of fleet deployed; Trans% percentage of total cargo volume transported and Time (CPU sec.) execution time in CPU seconds. Best of five runs with identical seeds

NOTE

The LSNDP solutions are not feasible for LSNDP-TT