Dual-guided pivot rules for LP + Vector Space Decomposition for LP

> J. Desrosiers¹ J.B. Gauthier¹ M.E. Lübbecke²

(¹) HEC Montréal and GERAD(²) RWTH Aachen University

Route 2014, Snekkersten, Denmark June 1-4, 2014 • PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for *huge* problems $CG \equiv PS$ perturbation of the master problem (1985-2000)

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for *huge* problems $CG \equiv PS$ perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for *huge* problems $CG \equiv PS$ perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for *huge* problems $CG \equiv PS$ perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100
- IPS : Improved Primal Simplex

(Raymond, Soumis, Metrane, Orban 2008-11) generalizes DCA to LP; non-degenerate pivots; *positive edge rule*

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for *huge* problems $CG \equiv PS$ perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100
- IPS : Improved Primal Simplex (Raymond, Soumis, Metrane, Orban 2008-11) generalizes DCA to LP; non-degenerate pivots; *positive edge rule*
- MMCC : *minimum mean cost cycle-canceling* algorithm for networks 70%–90% of the PS pivots are degenerate; MMCC strongly polynomial.

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for *huge* problems $CG \equiv PS$ perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100
- IPS : Improved Primal Simplex (Raymond, Soumis, Metrane, Orban 2008-11) generalizes DCA to LP; non-degenerate pivots; *positive edge rule*
- MMCC : *minimum mean cost cycle-canceling* algorithm for networks 70%–90% of the PS pivots are degenerate; MMCC strongly polynomial.

What are the links between PS, DCA, IPS, and MMCC?

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for *huge* problems $CG \equiv PS$ perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100
- IPS : Improved Primal Simplex (Raymond, Soumis, Metrane, Orban 2008-11) generalizes DCA to LP; non-degenerate pivots; *positive edge rule*
- MMCC : *minimum mean cost cycle-canceling* algorithm for networks 70%–90% of the PS pivots are degenerate; MMCC strongly polynomial.

What are the links between PS, DCA, IPS, and MMCC?

... and Dantzig-Wolfe decompostion?

Observation #1

LP in standard form

$$\begin{array}{rll} \mathsf{in} & \mathsf{c}^\mathsf{T} \mathsf{x} & \\ & \mathsf{A} \mathsf{x} & = \mathsf{b} & & [\pi] \\ & \mathsf{x} & \geq \mathsf{0} \end{array}$$

From $\boldsymbol{x^0}$ to $\boldsymbol{x^1}$

• Find a *potential* improving direction $\mathbf{y}^0 \in \mathbb{R}^n$.

m

- **2** Determine step-size $\rho^0 \in \mathbb{R}$.
- $\textbf{3} \quad \text{Compute } \mathbf{x}^{\mathbf{1}} := \mathbf{x}^{\mathbf{0}} + \rho^{\mathbf{0}} \, \mathbf{y}^{\mathbf{0}}.$

$\bar{c}_i = 0, \forall j \in B$: Pricing for $j \in N$ (non-basic variables)

Selection of an entering variable into basis \mathbf{A}_B relies on the minimum reduced cost of non-basic variables $\pi^{\mathsf{T}} = \mathbf{c}_R^{\mathsf{T}} \mathbf{A}_B^{-1}$ $\bar{c}_i = c_i - \pi^{\mathsf{T}} \mathbf{a}_i, \quad \forall j \in N.$

$\bar{c}_j = 0, \forall j \in B$: Pricing for $j \in N$ (non-basic variables)

Selection of an entering variable into basis \mathbf{A}_B relies on the minimum reduced cost of non-basic variables $\pi^{\mathsf{T}} = \mathbf{c}_B^{\mathsf{T}} \mathbf{A}_B^{-1}$ $\bar{c}_i = c_i - \pi^{\mathsf{T}} \mathbf{a}_i, \quad \forall j \in N.$

$\bar{c}_j = \mathbf{0}, \forall j \in B$: Pricing for $j \in N$ (non-basic variables)

Selection of an entering variable into basis \mathbf{A}_B relies on the minimum reduced cost of non-basic variables $\pi^{\mathsf{T}} = \mathbf{c}_B^{\mathsf{T}} \mathbf{A}_B^{-1}$ $\bar{c}_i = c_i - \pi^{\mathsf{T}} \mathbf{a}_i, \quad \forall j \in N.$

Equivalent to finding a convex combination of non-basic variables

$$egin{array}{rcl} \mu = & \min & \sum_{j \in N} ar{c}_j y_j \ & \sum_{j \in N} y_j & = & 1 & [\mu] \ & y_j & \geq & 0, \ orall j \in N \end{array}$$

y^0 in the Primal Simplex

 $\begin{array}{l} \mbox{Direction } y^0 \in \mathbb{R}^n: \\ \mbox{the selected entering variable,} \\ \mbox{the non-selected non-basic variables (they remain at 0),} \\ \mbox{ and the basic ones.} \end{array}$

Step size computed such that $\mathbf{x}^1 := \mathbf{x}^0 + \rho^0 \, \mathbf{y}^0 \ge \mathbf{0}$.

Observation # 2: Degenerate solution on simplex-tableau

PRIMAL SIMPLEX TABLEAU

*** Changes on at most m + 1 components. ***

Positive Edge strategy

*** Changes on at most p + 1 components. *** Non-degenerate pivot.

Positive Edge : identification in O(m)

NOTATION

Vectors and matrices are written in **bold face**.

 I_ℓ : the $\ell \times \ell$ identity matrix.

0 (1) : a vector/matrix with all zeros (ones) entries of appropriate dimensions. A_{RC} : sub-matrix of **A** containing the rows and columns indexed by *R* and *C*.

Basis \mathbf{A}_B , inverse \mathbf{A}_B^{-1} , $\mathbf{c}_B^\mathsf{T} \mathbf{x}_B$, $\mathbf{A}_B \mathbf{x}_B$, $\pi = \mathbf{c}_B \mathbf{A}_B^{-1}$... $\mathbf{I}_F < \mathbf{x}_F < \mathbf{u}_F$, $\mathbf{x}_L = \mathbf{I}_L$, $\mathbf{x}_U = \mathbf{u}_U$

Useful decomposition of $x \in \mathbb{R}^n$ in Ax = b, $I \le x \le u$

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{F} \\ \mathbf{x}_{L} \\ \mathbf{x}_{U} \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} \mathbf{x}_{B} \\ \mathbf{x}_{N} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{F} \\ \mathbf{x}_{B_{L}} \\ \mathbf{x}_{B_{U}} \\ \mathbf{x}_{N_{L}} \\ \mathbf{x}_{N_{U}} \end{bmatrix}$$

For $\emptyset \subseteq \mathbf{S} \subseteq B : \mathbf{x} = \begin{bmatrix} \mathbf{x}_{S} \\ \mathbf{x}_{S} \\ \mathbf{x}_{S} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{S_{F}} \\ \mathbf{x}_{S_{L}} \\ \mathbf{x}_{S_{U}} \\ \mathbf{x}_{S_{L}} \\ \mathbf{x}_{S_{U}} \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} \mathbf{x}_{0} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{F} \\ \mathbf{x}_{L} \\ \mathbf{x}_{U} \end{bmatrix}$

Dual Guided Pivot Rules for LPs

GENERIC ALGORITHM WITH SINGLE PARAMETER SET S, $\emptyset \subseteq S \subseteq B$

Let k = 0 and assume a feasible basic solution x^k to LP (standard form).
Select S ⊆ B. z^{*} := min c^T₅x₅ + c^T₅x₅ st. A^T₅x₅ + A^T₅x₅ = b x₅, x₅ ≥ 0

3 From A_s , retrieve an $s \times s$ basis A_{RS} for row-set R.

$$z^* := \min \mathbf{c}_{S}^{\mathsf{T}} \mathbf{x}_{S} + \mathbf{c}_{S}^{\mathsf{T}} \mathbf{x}_{\bar{S}}$$

st.
$$\mathbf{A}_{RS}^{\mathsf{T}} \mathbf{x}_{S} + \mathbf{A}_{R\bar{S}}^{\mathsf{T}} \mathbf{x}_{\bar{S}} = \mathbf{b}_{R} \quad [\boldsymbol{\pi}_{R}]$$
$$\mathbf{A}_{ZS}^{\mathsf{T}} \mathbf{x}_{S} + \mathbf{A}_{Z\bar{S}}^{\mathsf{T}} \mathbf{x}_{\bar{S}} = \mathbf{b}_{Z} \quad [\boldsymbol{\pi}_{Z}]$$
$$\mathbf{x}_{S}, \mathbf{x}_{\bar{S}} \ge \mathbf{0}$$

• Fix π_R in row-set R; π_Z is free.

() Determine the smallest reduced cost μ_{S}^{k} .

 $\mu_{S}^{k} := \max \mu \text{ st. } \mu \leq c_{j} - \pi_{R}^{\mathsf{T}} \mathbf{a}_{Rj} - \pi_{Z}^{\mathsf{T}} \mathbf{a}_{Zj}, \quad \forall j$

If $\mu_{S}^{k} \geq 0$, STOP. Current solution \mathbf{x}^{k} is optimal for LP.

(a) Retrieve direction $\mathbf{y}_{S}^{k} \in \mathbb{R}^{n}$ and compute its maximum step-size ρ_{S}^{k} .

- **O** Update $\mathbf{x}^{k+1} := \mathbf{x}^k + \rho_S^k \mathbf{y}_S^k$; $z^{k+1} := z^k + \rho_S^k \mu_S^k$; k := k+1.
- Goto Step 2.

Dual Guided Pivot Rules for LPs

Linear program LP

$$\begin{aligned} z^{\star} &:= & \min \ \mathbf{c}^\mathsf{T} \mathbf{x} \\ \text{st.} & \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{I} &\leq \mathbf{x} &\leq \mathbf{u} \end{aligned}$$

Dual Guided Pivot Rules for LPs

Linear program LP

Generic Algorithm with single parameter set S, $\emptyset \subseteq S \subseteq B$

Q Let k = 0 and assume a feasible basic solution \mathbf{x}^k to LP.

Z

- **2** Select $\emptyset \subseteq \mathbf{S} \subseteq B$.
- **③** From A_S , retrieve A_{RS} and construct *residual problem* $LP_S(\mathbf{x}^k)$.
- Fix dual variables in row-set R: π_R .
- Determine the value of the smallest reduced cost μ^k_S.
 If μ^k_S ≥ 0, STOP. Current solution x^k is optimal for LP.
- **3** Retrieve direction $\mathbf{y}_{S}^{k} \in \mathbb{R}^{n}$ and compute its maximum step-size ρ_{S}^{k} .

⊘ Update
$$x^{k+1} := x^k + \rho_S^k y_S^k$$
;
 $z^{k+1} := z^k + \rho_S^k \mu_S^k$;
 $k := k + 1$.

Goto Step 2.

STEP 3 CONSTRUCT RESIDUAL PROBLEM $LP(\mathbf{x}^k)$

Step 3 Construct residual problem $LP(\mathbf{x}^k)$

Assume a feasible solution
$$\mathbf{x}^{k} = \begin{bmatrix} \mathbf{x}_{F}^{k} \\ \mathbf{x}_{U}^{k} \\ \mathbf{x}_{U}^{k} \end{bmatrix}$$

 $\mathbf{x} := \mathbf{x}^{k} + \mathbf{y}, \quad \mathbf{y} \in \mathbb{R}^{n}$
 $= \mathbf{x}^{k} + (\mathbf{y} - \mathbf{\bar{y}}), \qquad \mathbf{y}, \mathbf{\bar{y}} \ge \mathbf{0}, \quad \mathbf{y}^{\mathsf{T}} \mathbf{\bar{y}} = \mathbf{0}, \quad \mathbf{y} \le \mathbf{\bar{r}}^{k}, \quad \mathbf{\bar{y}} \le \mathbf{\bar{r}}^{k}$

Assume a feasible solution $\mathbf{x}^{k} = \begin{bmatrix} \mathbf{x}_{F}^{k} \\ \mathbf{x}_{L}^{k} \\ \mathbf{x}_{U}^{k} \end{bmatrix}$ $\mathbf{x} := \mathbf{x}^k + \mathbf{y}, \quad \mathbf{y} \in \mathbb{R}^n$ $\vec{\mathbf{y}}, \vec{\mathbf{y}} \ge \mathbf{0}, \ \vec{\mathbf{y}}^{\mathsf{T}} \vec{\mathbf{y}} = \mathbf{0}, \ \vec{\mathbf{y}} \le \vec{\mathbf{r}}^k, \ \vec{\mathbf{y}} \le \vec{\mathbf{r}}^k$ $= \mathbf{x}^{k} + (\mathbf{\vec{y}} - \mathbf{\vec{y}}),$ $= \mathbf{x}^{k} + \left(\begin{bmatrix} \mathbf{\vec{y}}_{F} \\ \mathbf{\vec{y}}_{L} \\ \mathbf{\vec{v}}_{U} \end{bmatrix} - \begin{bmatrix} \mathbf{\vec{y}}_{F} \\ \mathbf{\vec{y}}_{L} \\ \mathbf{\vec{v}} \end{bmatrix} \right); \quad \mathbf{\vec{y}}, \mathbf{\vec{y}} \ge \mathbf{0}, \quad \mathbf{\vec{y}}^{\mathsf{T}} \mathbf{\vec{y}} = \mathbf{0}, \quad \mathbf{\vec{y}} \le \mathbf{\vec{r}}^{k}, \quad \mathbf{\vec{y}} \le \mathbf{\vec{r}}^{k}$ Уj -----» Ci , ÿj $-c_i$

Residual problem $LP(\mathbf{x}^k)$; $\mathbf{x} := \mathbf{x}^k + (\mathbf{y} - \mathbf{y})$ (change of variables)			
$z^{\star} := \min \mathbf{c}^{\intercal} \mathbf{x}^{k} + \mathbf{c}^{\intercal} (\mathbf{ar{y}} - \mathbf{ar{y}})$			
st. Ax^k + $A(\vec{y} - \vec{y})$ = b			
$0 \leq \mathbf{ec{y}} \leq \mathbf{ec{r}}^k$			
$0\leq\mathbf{ar{y}}\leq\mathbf{ar{r}}^k$			

Residual problem $LP(\mathbf{x}^k)$	
$z^{\star} := \mathbf{c}^{T} \mathbf{x}^k + \min$	$c^{\intercal}(\vec{y} - \vec{y})$
st.	$A(\vec{y}-ar{y}) = 0$
	$0 \leq \mathbf{\vec{y}} \leq \mathbf{\vec{r}}^k$
	$0 \leq \mathbf{ar{y}} \leq \mathbf{ar{r}}^k$

RESIDUAL PR	ROBLEM WITH $S = F$,	$\bar{S} = L \cup U$		
$z^{\star} := \mathbf{c}^{T} \mathbf{x}^k +$				
min	$\mathbf{c}_F^{T}(\mathbf{ec{y}}_F - \mathbf{ec{y}}_F)$ +	$+ \mathbf{c}_{L}^{T}(\vec{\mathbf{y}}_{L}) -$	$\mathbf{c}_U^{T}(\mathbf{\bar{y}}_U)$	
st.	$\mathbf{A}_F(\mathbf{ar{y}}_F - \mathbf{ar{y}}_F)$ +	+ $\mathbf{A}_L(\vec{\mathbf{y}}_L)$ –	$\mathbf{A}_U(\mathbf{\bar{y}}_U) =$	0
	$ec{\mathbf{y}}_{ extsf{F}} \geq 0, \ ec{\mathbf{y}}_{ extsf{F}} \geq 0,$	$\vec{\mathbf{y}}_L \geq 0,$	$\mathbf{ar{y}}_U \geq 0$	
	$\vec{\mathbf{y}}_F \leq \vec{\mathbf{r}}_F, \ \mathbf{\tilde{y}}_F \leq \mathbf{\tilde{r}}_F,$	$\vec{\mathbf{y}}_L \leq \vec{\mathbf{r}}_L,$	$\mathbf{\tilde{y}}_{U} \leq \mathbf{\tilde{r}}_{U}$	J

Step 3 Construct residual problem $LP(x^k)$

RESIDU	VAL PROBLEM WITH $S = B$	(basic), $\bar{S} = N$ (non-basic)	
$\mathbf{c}^{T}\mathbf{x}^{k} +$	min $\mathbf{c}_B^{\intercal}(\vec{\mathbf{y}}_B - \mathbf{\ddot{y}}_B)$ +	$\mathbf{c}_{N_{l}}^{T} \mathbf{ec{y}}_{N_{L}} - \mathbf{c}_{N_{l}l}^{T} \mathbf{ec{y}}_{N_{l}l}$	
	st. $\mathbf{A}_B(\vec{\mathbf{y}}_B - \mathbf{\ddot{y}}_B)$ +	$\mathbf{A}_{N_L} \vec{\mathbf{y}}_{N_L} - \mathbf{A}_{N_U} \vec{\mathbf{y}}_{N_U} = 0$	
	$ec{\mathbf{y}}_B \geq 0, \ \mathbf{ar{y}}_B \geq 0$	$\mathbf{ar{y}}_{N_L} \geq 0, \ \mathbf{ar{y}}_{N_U} \geq 0$	
	$ec{\mathbf{y}}_{F} \leq ec{\mathbf{r}}_{F}, \ ec{\mathbf{y}}_{F} \leq ec{\mathbf{r}}_{F}$		
	$\mathbf{ar{y}}_{B_L} \leq 0, \ \mathbf{ar{y}}_{B_U} \leq 0$	$ec{\mathbf{y}}_{N_L} \leq ec{\mathbf{r}}_{N_L}, ec{\mathbf{y}}_{N_U} \leq ec{\mathbf{r}}_{N_U}$	
_			_
	$B=F\cup B_L\cup B_U;$	$N = N_L \cup N_U$	

For
$$\emptyset \subseteq S \subseteq B$$
, find $\mathbf{y}^k = \begin{bmatrix} \mathbf{y}^k_S \\ \mathbf{y}^k_S \end{bmatrix} = \begin{bmatrix} (\mathbf{\overline{y}}^k_S - \mathbf{\overline{y}}^k_S) \\ (\mathbf{\overline{y}}^k_S - \mathbf{\overline{y}}^k_S) \end{bmatrix}$ of min reduced cost μ^k .

For basic columns A_{S} , retrieve a partial basis A_{RS} , a set of s independent rows. $\mathbf{T} = \begin{bmatrix} A_{RS} & \mathbf{0} \\ A_{ZS} & \mathbf{I}_{m-s} \end{bmatrix} \quad \mathbf{T}^{-1} = \begin{bmatrix} A_{RS}^{-1} & \mathbf{0} \\ -A_{ZS}A_{RS}^{-1} & \mathbf{I}_{m-s} \end{bmatrix}$

For
$$\emptyset \subseteq S \subseteq B$$
, find $\mathbf{y}^k = \begin{bmatrix} \mathbf{y}^k_S \\ \mathbf{y}^k_S \end{bmatrix} = \begin{bmatrix} (\mathbf{\overline{y}}^k_S - \mathbf{\overline{y}}^k_S) \\ (\mathbf{\overline{y}}^k_S - \mathbf{\overline{y}}^k_S) \end{bmatrix}$ of min reduced cost μ^k .

For basic columns A_S , retrieve a partial basis A_{RS} , a set of s independent rows. $T = \begin{bmatrix} A_{RS} & 0 \\ A_{ZS} & I_{m-s} \end{bmatrix} \quad T^{-1} = \begin{bmatrix} A_{RS}^{-1} & 0 \\ -A_{ZS}A_{RS}^{-1} & I_{m-s} \end{bmatrix}$

Indeed, **T** is a basis of \mathbb{R}^m .

STEP 4 FIX DUAL VARIABLES IN ROW-SET R

 $\emptyset \subseteq \mathbf{S} \subseteq B$ Perform $\mathbf{T}^{-1}\mathbf{A}(\mathbf{y} - \mathbf{\overline{y}}) = \mathbf{0}$.

A block angular structure appears *after* the transformation by T^{-1} .

General case		$\pi^{\intercal} = \psi^{\intercal} T^{-1}$
$\mathbf{c}^{T}\mathbf{x}^{k}$ + min $\mathbf{c}_{S}^{T}(\vec{\mathbf{y}}_{S}-\mathbf{\ddot{y}}_{S})$ +	$\mathbf{c}_{ar{5}}^{\intercal}(ec{\mathbf{y}}_{ar{5}}-ec{\mathbf{y}}_{ar{5}})$	
st. $(\vec{\mathbf{y}}_S - \mathbf{\bar{y}}_S)$ +	$ar{A}_{Rar{S}}(ec{y}_{ar{S}}-ec{y}_{ar{S}})$	$= 0 \ [\boldsymbol{\psi}_R = \mathbf{c}_S]$
$ec{\mathbf{y}}_{\mathcal{S}} \geq 0, \ \mathbf{ar{y}}_{\mathcal{S}} \geq 0$		
	$\mathbf{\bar{A}}_{Z\bar{S}}(\mathbf{\vec{y}}_{\bar{S}}-\mathbf{\ddot{y}}_{\bar{S}})$	$=$ 0 [ψ_Z free]
	$ec{\mathbf{y}}_{ar{S}} \geq 0, \ \mathbf{ar{y}}_{ar{S}} \geq 0$	
$ec{\mathbf{y}}_{\mathcal{S}} \leq ec{\mathbf{r}}_{\mathcal{S}}, \ ec{\mathbf{y}}_{\mathcal{S}} \leq ec{\mathbf{r}}_{\mathcal{S}}$	$\vec{\mathbf{y}}_{\bar{S}} \leq \vec{\mathbf{r}}_{\bar{S}}, \ \mathbf{\bar{y}}_{\bar{S}} \leq \mathbf{\bar{r}}_{\bar{S}}$	

Observe $\bar{\mathbf{c}}_{S} = \mathbf{0}$ (basic variables).

Master basis I_s. DW subproblem in red.

PRICING OF THE VARIABLES

 $S \subseteq B$, hence $\bar{c}_S = 0$. Therefore pricing of $\bar{y}_{\bar{s}}$ and $\bar{y}_{\bar{s}}$ needed to get partial direction $(\bar{y}_{\bar{s}}^k - \bar{y}_{\bar{s}}^k)$

followed by impact on $(\vec{\mathbf{y}}_{S}^{k} - \vec{\mathbf{y}}_{S}^{k})$ to complete direction $\mathbf{y}^{k} = \begin{bmatrix} \mathbf{y}_{S}^{k} \\ \mathbf{y}_{S}^{k} \end{bmatrix}$.

PRIMAL/DUAL FORMULATIONS OF THE PRICING

$$\begin{array}{rcl} \max \ \mu \ \ \text{st.} \ \ \mu \mathbf{1}^{\intercal} & \leq & \mathbf{c}_{\bar{S}}^{\intercal} - \boldsymbol{\psi}_{R}^{\intercal} \mathbf{A}_{R\bar{S}} - \boldsymbol{\psi}_{Z}^{\intercal} \bar{\mathbf{A}}_{Z\bar{S}} & [\ \vec{\mathbf{y}}_{\bar{S}} \\ & \mu \mathbf{1}^{\intercal} & \leq - (\mathbf{c}_{\bar{S}}^{\intercal} - \boldsymbol{\psi}_{R}^{\intercal} \mathbf{A}_{R\bar{S}} - \boldsymbol{\psi}_{Z}^{\intercal} \bar{\mathbf{A}}_{Z\bar{S}}) & [\ \mathbf{\bar{y}}_{\bar{S}} \end{array}$$

A convex combination of the variables $\vec{y}_{\bar{s}}$ and $\tilde{y}_{\bar{s}}$

$$\mu = \min \left(\mathbf{c}_{\bar{S}}^{\mathsf{T}} - \boldsymbol{\psi}_{R}^{\mathsf{T}} \mathbf{A}_{R\bar{S}} \right) (\bar{\mathbf{y}}_{\bar{S}} - \bar{\mathbf{y}}_{\bar{S}})$$

st.
$$\mathbf{1}^{\mathsf{T}} \, \mathbf{y}_{\bar{S}} + \mathbf{1}^{\mathsf{T}} \, \mathbf{y}_{\bar{S}} = \mathbf{1} \quad [\mu]$$
$$\mathbf{A}_{Z\bar{S}} (\bar{\mathbf{y}}_{\bar{S}} - \bar{\mathbf{y}}_{\bar{S}}) = \mathbf{0} \quad [\boldsymbol{\psi}_{Z}$$
$$\mathbf{y}_{\bar{S}}, \mathbf{y}_{\bar{S}} \ge \mathbf{0}, \mathbf{y}_{\bar{S}_{L}} \le \mathbf{0}, \ \mathbf{y}_{\bar{S}_{U}} \le \mathbf{0}$$

*** Optimal solution : μ_{S}^{k} , $\vec{\mathbf{y}}_{\bar{S}}^{k}$ and $\mathbf{\bar{y}}_{\bar{S}}^{k}$. ***

 $\psi_R^{\mathsf{T}} = \mathsf{c}_{\mathsf{S}}^{\mathsf{T}} \mathsf{A}_{\mathsf{R}}^{-1}$

... Complete direction \mathbf{y}_{S}^{k}

Given
$$\mu^k < 0$$
 and $(\vec{\mathbf{y}}_{\bar{\mathbf{S}}}^k - \vec{\mathbf{y}}_{\bar{\mathbf{S}}}^k)$, find impacts on $(\vec{\mathbf{y}}_{\bar{\mathbf{S}}}^k - \vec{\mathbf{y}}_{\bar{\mathbf{S}}}^k)$.
 $(\vec{\mathbf{y}}_{\bar{\mathbf{S}}} - \vec{\mathbf{y}}_{\bar{\mathbf{S}}}) + \bar{\mathbf{A}}_{R\bar{\mathbf{S}}}(\vec{\mathbf{y}}_{\bar{\mathbf{S}}}^k - \vec{\mathbf{y}}_{\bar{\mathbf{S}}}^k) = \mathbf{0}$
 $\vec{\mathbf{y}}_{\bar{\mathbf{S}}} \ge \mathbf{0}, \ \mathbf{y}_{\bar{\mathbf{S}}} \ge \mathbf{0}$
 $\vec{\mathbf{y}}_{\bar{\mathbf{S}}} \ge \mathbf{0}, \ \forall \mathbf{y} \in S_F$

DIRECTION \mathbf{y}_{S}^{k}

$$\mathbf{y}_{5}^{k} = \begin{bmatrix} (\vec{\mathbf{y}}_{5}^{k} - \bar{\mathbf{y}}_{5}^{k}) \\ (\vec{\mathbf{y}}_{5}^{k} - \bar{\mathbf{y}}_{5}^{k}) \end{bmatrix} = \begin{bmatrix} -\bar{\mathbf{A}}_{R\bar{5}}(\vec{\mathbf{y}}_{5}^{k} - \bar{\mathbf{y}}_{5}^{k}) \\ (\vec{\mathbf{y}}_{5}^{k} - \bar{\mathbf{y}}_{5}^{k}) \end{bmatrix} : \begin{bmatrix} \text{Impact level (MP)} \\ \text{Pricing level (SP)} \end{bmatrix}$$

 $\vec{y}_{S}^{k}, \ddot{y}_{S}^{k}$ take positive and negative parts of $-\bar{A}_{R\bar{S}}(\vec{y}_{\bar{S}}^{k}-\ddot{y}_{\bar{S}}^{k})$, respectively.

Step 6 Compute maximum step-size ρ_{S}^k

$$\rho \begin{bmatrix} \vec{\mathbf{y}}_{S_{F}}^{k} \\ \vec{\mathbf{y}}_{S_{U}}^{k} \\ \vec{\mathbf{y}}_{S_{U}} \end{bmatrix} \leq \begin{bmatrix} \vec{\mathbf{r}}_{S_{F}}^{k} \\ \vec{\mathbf{r}}_{S_{L}}^{k} \\ \mathbf{0} \end{bmatrix}; \quad \rho \begin{bmatrix} \mathbf{\bar{y}}_{S_{F}}^{k} \\ \mathbf{\bar{y}}_{S_{U}}^{k} \\ \mathbf{\bar{y}}_{S_{U}}^{k} \end{bmatrix} \leq \begin{bmatrix} \vec{\mathbf{r}}_{S_{F}}^{k} \\ \vec{\mathbf{r}}_{S_{F}}^{k} \\ \vec{\mathbf{y}}_{S_{L}}^{k} \\ \mathbf{0} \end{bmatrix} \leq \begin{bmatrix} \vec{\mathbf{r}}_{S_{F}}^{k} \\ \vec{\mathbf{r}}_{S_{L}}^{k} \\ \mathbf{0} \end{bmatrix}; \quad \rho \begin{bmatrix} \mathbf{\bar{y}}_{S_{F}}^{k} \\ \mathbf{0} \\ \mathbf{\bar{y}}_{S_{U}}^{k} \end{bmatrix} \leq \begin{bmatrix} \mathbf{\bar{r}}_{S_{F}}^{k} \\ \mathbf{0} \\ \mathbf{\bar{r}}_{S_{U}}^{k} \end{bmatrix}$$

10 out of 12 types of residual upper bonds to verify. $\emptyset \subseteq S \subseteq B$

STEP 6 COMPUTE MAXIMUM STEP-SIZE
$$\rho_{S}^{k}$$

$$\rho \begin{bmatrix} \vec{\mathbf{y}}_{F}^{k} \\ \vec{\mathbf{y}}_{B_{L}}^{k} \\ \vec{\mathbf{y}}_{B_{U}}^{k} \end{bmatrix} \leq \begin{bmatrix} \vec{\mathbf{r}}_{F}^{k} \\ \vec{\mathbf{r}}_{B_{L}}^{k} \\ \mathbf{0} \end{bmatrix}; \quad \rho \begin{bmatrix} \vec{\mathbf{y}}_{B_{L}}^{k} \\ \vec{\mathbf{y}}_{B_{U}}^{k} \end{bmatrix} \leq \begin{bmatrix} \vec{\mathbf{r}}_{F}^{k} \\ \mathbf{y}_{B_{U}}^{k} \end{bmatrix}$$

$$\rho \begin{bmatrix} \vec{\mathbf{y}}_{N_{L}}^{k} \end{bmatrix} \leq \begin{bmatrix} \vec{\mathbf{r}}_{N_{L}}^{k} \end{bmatrix}; \quad \rho \begin{bmatrix} \mathbf{y}_{N_{U}}^{k} \end{bmatrix} \leq \begin{bmatrix} \mathbf{\bar{r}}_{N_{U}}^{k} \end{bmatrix}$$

8 types of residual upper bonds to verify for Primal Simplex. S = B

Only 2 types of residual upper bonds to verify for PS in standard form. $S = B = P \cup Z$ (positive and zero variables)

STEP 6 COMPUTE MAXIMUM STEP-SIZE ρ_{s}^{k} $\rho \begin{bmatrix} \vec{\mathbf{y}}_{F}^{k} \\ \vec{\mathbf{y}}_{L}^{k} \end{bmatrix} \leq \begin{bmatrix} \vec{\mathbf{r}}_{F}^{k} \\ \vec{\mathbf{r}}_{L}^{k} \end{bmatrix}; \quad \rho \begin{bmatrix} \vec{\mathbf{y}}_{F}^{k} \\ \vec{\mathbf{y}}_{U}^{k} \end{bmatrix} \leq \begin{bmatrix} \vec{\mathbf{r}}_{F}^{k} \\ \vec{\mathbf{r}}_{U}^{k} \end{bmatrix}$

4 types of strictly positive residual upper bonds to verify in MMCC. $S = \emptyset$

Step 6 Compute maximum step-size ρ_{S}^k

$$\rho \left[\begin{array}{c} \vec{\mathbf{y}}_{F}^{k} \end{array} \right] \leq \left[\begin{array}{c} \vec{\mathbf{r}}_{F}^{k} \end{array} \right]; \quad \rho \left[\begin{array}{c} \mathbf{\tilde{y}}_{F}^{k} \end{array} \right] \leq \left[\begin{array}{c} \mathbf{\tilde{r}}_{F}^{k} \end{array} \right]$$

$$\rho \begin{bmatrix} \mathbf{\vec{y}}_L^k \end{bmatrix} \leq \begin{bmatrix} \mathbf{\vec{r}}_L^k \end{bmatrix}; \quad \rho \begin{bmatrix} \mathbf{\vec{y}}_U^k \end{bmatrix} \leq \begin{bmatrix} \mathbf{\vec{r}}_U^k \end{bmatrix}$$

4 types of strictly positive residual upper bonds to verify in IPS. S = F

Special case #1: S = B

$$\mathsf{T} = [\mathsf{A}_B \quad \emptyset], \quad \mathsf{T}^{-1} = \left[\begin{array}{c} \mathsf{A}_B^{-1} \\ \emptyset \end{array} \right]$$

 $B = F \cup B_L \cup B_U; \quad N = N_L \cup N_U$

Special case #1: S = B

$$\mathbf{T} = \begin{bmatrix} \mathbf{A}_B & \emptyset \end{bmatrix}, \quad \mathbf{T}^{-1} = \begin{bmatrix} \mathbf{A}_B^{-1} \\ \emptyset \end{bmatrix}$$
$$B = F \cup B_I \cup B_{II}; \quad N = N_I \cup N_I$$

PRIMAL SIMPLEX METHOD (DANTZIG 1945)

$\mathbf{c}^{T}\mathbf{x}^{k} + \min \mathbf{c}_{B}^{T}(\mathbf{\vec{y}}_{B} - \mathbf{\vec{y}}_{B})$	+	$\mathbf{c}_{N_L}^{\intercal} ec{\mathbf{y}}_{N_L} - \mathbf{c}_{N_U}^{\intercal} ec{\mathbf{y}}_{N_U}$			
st. $(\vec{\mathbf{y}}_B - \vec{\mathbf{y}}_B)$	+	$ar{A}_{N_L}ec{y}_{N_L} - ar{A}_{N_U} ec{y}_{N_U}$	=	0	$[oldsymbol{\psi}^{\intercal}=oldsymbol{c}_B]$
$ec{\mathbf{y}}_B \geq 0, \ \mathbf{ar{y}}_B \geq 0$					
		$ec{\mathbf{y}}_{N_L} \geq 0, \ \mathbf{ar{y}}_{N_U} \geq 0$			
$ec{\mathbf{y}}_F \leq ec{\mathbf{r}}_F, \ ec{\mathbf{y}}_F \leq ec{\mathbf{r}}_F$					
$\mathbf{\ddot{y}}_{B_L} \leq 0, \ \mathbf{\ddot{y}}_{B_U} \leq 0$		$ec{\mathbf{y}}_{N_L} \leq ec{\mathbf{r}}_{N_L}, ec{\mathbf{y}}_{N_U} \leq ec{\mathbf{r}}_{N_U}$			$* ho_B \ge 0*$

Properties of PS

No equality constraints in the pricing problem. Pricing contains • convex combination of the non-basic variables • non-negativity restrictions (a cone). Due to the step-size $*\rho_B \ge 0*$, possible degenerate pivots. Oscillation of μ_B ; it may even not converge towards 0. Special case $\#2: S = F \Rightarrow \overline{S} = L \cup U$

$$\mathbf{T} = \begin{bmatrix} \mathbf{A}_{RF} & \mathbf{0} \\ \mathbf{A}_{ZF} & \mathbf{I}_{m-r} \end{bmatrix}, \quad \mathbf{T}^{-1} = \begin{bmatrix} \mathbf{A}_{RF}^{-1} & \mathbf{0} \\ -\mathbf{A}_{ZS}\mathbf{A}_{RF}^{-1} & \mathbf{I}_{m-r} \end{bmatrix}.$$

Special case $\#2: S = F \Rightarrow \overline{S} = L \cup U$

$$\mathbf{T} = \begin{bmatrix} \mathbf{A}_{RF} & \mathbf{0} \\ \mathbf{A}_{ZF} & \mathbf{I}_{m-r} \end{bmatrix}, \quad \mathbf{T}^{-1} = \begin{bmatrix} \mathbf{A}_{RF}^{-1} & \mathbf{0} \\ -\mathbf{A}_{ZS}\mathbf{A}_{RF}^{-1} & \mathbf{I}_{m-r} \end{bmatrix}$$

Improved Primal Simplex method (Elhallaoui et al. 2011)

Properties of IPS

f equality constraints in the master problem, m - f in the pricing problem.

Non-degenerate pivots only ($\rho_F > 0$).

 $z^0 > z^1 > z^2 > \cdots = z^*$ cost strictly decreasing at each iteration ($\rho_F > 0$). Oscillation of μ_F but converging towards 0. Special case $\#3: S = \emptyset$

Select
$$S = \emptyset$$
. $\mathbf{T} = \begin{bmatrix} \emptyset & \mathbf{I}_m \end{bmatrix}$, $\mathbf{T}^{-1} = \begin{bmatrix} \emptyset \\ \mathbf{I}_m \end{bmatrix}$

Special case $\#3: S = \emptyset$

Select
$$S = \emptyset$$
. $T = \begin{bmatrix} \emptyset & I_m \end{bmatrix}$, $T^{-1} = \begin{bmatrix} \emptyset & I_m \end{bmatrix}$

Minimum mean cycle-canceling algorithm adapted for LP					
$\mathbf{c}^{T}\mathbf{x}^{k}+$		min	$\mathbf{c}^{\intercal}(\mathbf{\vec{y}}-\mathbf{\overleftarrow{y}})$		
	st.		$A(\vec{y} - \vec{y})$	= 0	Directions
			y , y	\geq 0	in the cone
			$\mathbf{\tilde{y}}_L, \ \mathbf{\tilde{y}}_U$	\leq 0	at vertex x ^k
		ÿ _F	$(\mathbf{\bar{y}}_{F}, \mathbf{\bar{y}}_{L}, \mathbf{\bar{y}}_{U})$	$\leq \vec{\mathbf{r}}_F^k, \mathbf{\tilde{r}}_F^k, \mathbf{\tilde{r}}_L^k, \mathbf{\tilde{r}}_U^k$	$*Step \; size \; ho_{\emptyset} > 0*$

PROPERTIES OF MMCC

All equality constraints in the pricing problem.

Upper bounds in the master problem.

 $z^0>z^1>z^2>\cdots=z^\star \quad {\rm cost\ strictly\ decreasing\ at\ each\ iteration\ } (
ho_\emptyset>0).$

 $\mu^0 \le \mu^1 \le \mu^2 \le \dots = 0$ smallest reduced cost **non decreasing**.

MMCC is strongly polynomial for network flow problems in O(mn) phases. Goldberg and Tarjan (1989), Radzick and Goldberg (1994)

Computational results

μ for MMCC and IPS on a network (n=1025, m=91,220)

Computational results

Some Properties

S ∩ {L ∪ U} ≠ Ø : It may come up with degenerate pivots and not converge.
 Primal Simplex method (PS).
 S = B, * ρ_B ≥ 0 *

- S ∩ {L ∪ U} ≠ Ø : It may come up with degenerate pivots and not converge.
 Primal Simplex method (PS).
 S = B, * ρ_B ≥ 0 *
- $\emptyset \subseteq S \subseteq F$: It ensures a non-degenerate pivot at every iteration.
 - Improved Primal Simplex algorithm (IPS). S = F, $* \rho_F > 0 *$

- S ∩ {L ∪ U} ≠ Ø : It may come up with degenerate pivots and not converge.
 Primal Simplex method (PS).
 S = B, * ρ_B ≥ 0 *
- $\emptyset \subseteq S \subseteq F$: It ensures a non-degenerate pivot at every iteration.
 - Improved Primal Simplex algorithm (IPS). S = F, $* \rho_F > 0 *$
 - Minimum mean cycle-canceling algorithm (MMCC) $S = \emptyset$, $* \rho_{\emptyset} > 0 *$

- S ∩ {L ∪ U} ≠ Ø : It may come up with degenerate pivots and not converge.
 Primal Simplex method (PS).
 S = B, * ρ_B ≥ 0 *
- $\emptyset \subseteq S \subseteq F$: It ensures a non-degenerate pivot at every iteration.
 - Improved Primal Simplex algorithm (IPS). S = F, $* \rho_F > 0 *$
 - Minimum mean cycle-canceling algorithm (MMCC) $S = \emptyset$, $* \rho_{\emptyset} > 0 *$ Strongly polynomial for network flow problems.

- S ∩ {L ∪ U} ≠ Ø : It may come up with degenerate pivots and not converge.
 Primal Simplex method (PS).
 S = B, * ρ_B ≥ 0 *
- $\emptyset \subseteq S \subseteq F$: It ensures a non-degenerate pivot at every iteration.
 - Improved Primal Simplex algorithm (IPS). S = F, $* \rho_F > 0 *$
 - Minimum mean cycle-canceling algorithm (MMCC) $S = \emptyset$, $* \rho_{\emptyset} > 0 *$ Strongly polynomial for network flow problems.
 - * $S \subset F$: Optimal direction \mathbf{y}_{S}^{k} can be an <u>interior</u> ray.

*** Imagine the same transformation is kept for a while...

- $T := [\Lambda, \Lambda^{\perp}]$, where Λ is a set of independent columns.
- $\Lambda = \begin{bmatrix} \Lambda_R \\ \Lambda_Z \end{bmatrix}$, where Λ_R is a set of *s* independent rows of Λ .
- $\mathbf{T} = \begin{bmatrix} \mathbf{\Lambda}_R & \mathbf{0} \\ \mathbf{\Lambda}_Z & \mathbf{I}_{m-s} \end{bmatrix}$ $\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{\Lambda}_R^{-1} & \mathbf{0} \\ \mathbf{\Lambda}_Z \mathbf{\Lambda}_R^{-1} & \mathbf{I}_{m-s} \end{bmatrix}$
- T^{-1} splits row-space \mathbb{R}^m of $LP(\mathbf{x}^k)$ into two vector subspaces V and V^{\perp} .
- Vector subspace basis Λ spans \vee of dimension $0 \le s \le m$.

• Vector
$$\mathbf{a} \in \mathbf{V}$$
 if and only if $\overline{\mathbf{a}}_{\mathbb{Z}} = \mathbf{0}$, where $\overline{\mathbf{a}} = \mathbf{T}^{-1}\mathbf{a} = \begin{bmatrix} \overline{\mathbf{a}}_{\mathbb{R}} \\ \mathbf{0} \end{bmatrix}$.

- $S \subseteq B$: index set of basic columns spanned by Λ .
- Algorithmic properties derived according to subset *S*.

Dynamic Constraint Aggregation for Set Partitioning (Elhallaoui et al. 2005)

The partition of the row-set is derived from the f groups of identical rows of A_F .

Properties

 $F \subseteq S \subseteq B$ for fractional solutions but S = F (or $S = \emptyset$) for binary solutions. Degenerate pivots may occur, $\rho \ge 0$, if r > f.

Residual problem $LP(\mathbf{x}^k)$	
$z^{\star} := \mathbf{c}^{T} \mathbf{x}^{k} + \min$	$\mathbf{c}^{\intercal}(\mathbf{ar{y}}-\mathbf{ar{y}})$
st.	$A(\vec{y} - \vec{y}) = 0$
	$0 \leq \mathbf{ec{y}} \leq \mathbf{ec{r}}^k$
	$0 \leq \mathbf{ar{y}} \leq \mathbf{ar{r}}^k$