Dual-guided pivot rules for $L P$
 Vector Space Decomposition for LP

J. Desrosiers ${ }^{1}$
J.B. Gauthier ${ }^{1}$
M.E. Lübbecke ${ }^{2}$

(${ }^{1}$) HEC Montréal and GERAD
$\left.{ }^{(2}\right)$ RWTH Aachen University

Route 2014, Snekkersten, Denmark June 1-4, 2014

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for huge problems $C G \equiv$ PS perturbation of the master problem (1985-2000)
- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for huge problems $C G \equiv$ PS perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999)

Oukil et al (2007) : cpu time reduction by factors of 10 to 100

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for huge problems CG \equiv PS perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100
- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for huge problems CG \equiv PS perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100
- IPS : Improved Primal Simplex (Raymond, Soumis, Metrane, Orban 2008-11) generalizes DCA to LP ; non-degenerate pivots; positive edge rule
- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for huge problems CG \equiv PS perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100
- IPS : Improved Primal Simplex (Raymond, Soumis, Metrane, Orban 2008-11) generalizes DCA to LP ; non-degenerate pivots; positive edge rule
- MMCC : minimum mean cost cycle-canceling algorithm for networks $70 \%-90 \%$ of the PS pivots are degenerate ; MMCC strongly polynomial.
- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for huge problems CG \equiv PS perturbation of the master problem (1985-2000)
- DVS: Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100
- IPS : Improved Primal Simplex (Raymond, Soumis, Metrane, Orban 2008-11) generalizes DCA to LP ; non-degenerate pivots; positive edge rule
- MMCC : minimum mean cost cycle-canceling algorithm for networks $70 \%-90 \%$ of the PS pivots are degenerate ; MMCC strongly polynomial.

What are the links between PS, DCA, IPS, and MMCC ?

- PS : Primal Simplex and degenerate solutions perturbation, pivot rules, etc. (Terlaky and Zhang 1993)
- CG : Column Generation for huge problems CG \equiv PS perturbation of the master problem (1985-2000)
- DVS : Dual Variable Stabilization (du Merle et al. 1999) Oukil et al (2007) : cpu time reduction by factors of 10 to 100
- DCA : Dynamic Constraints Aggregation for Set Partitioning Problems (Elhallaoui, Metrane, Desaulniers, Soumis 2005-08) cpu time reduction by factors of 10 to 100
- IPS : Improved Primal Simplex (Raymond, Soumis, Metrane, Orban 2008-11) generalizes DCA to LP ; non-degenerate pivots; positive edge rule
- MMCC : minimum mean cost cycle-canceling algorithm for networks $70 \%-90 \%$ of the PS pivots are degenerate ; MMCC strongly polynomial.

What are the links between PS, DCA, IPS, and MMCC ?
... and Dantzig-Wolfe decompostion?

ObSERVATION \#1

LP IN STANDARD FORM

$$
\begin{aligned}
\min \mathbf{c}^{\top} \mathbf{x} & \\
\mathbf{A x} & =\mathbf{b} \\
\mathbf{x} & \geq \mathbf{0}
\end{aligned}
$$

From x^{0} тo x^{1}
(1) Find a potential improving direction $\mathbf{y}^{0} \in \mathbb{R}^{n}$.
(2) Determine step-size $\rho^{0} \in \mathbb{R}$.
(3) Compute $\mathbf{x}^{1}:=\mathbf{x}^{0}+\rho^{0} \mathbf{y}^{0}$.
$\bar{c}_{j}=0, \forall j \in B: \quad$ Pricing for $j \in N$ (NON-BASIC VARIABLES)
Selection of an entering variable into basis A_{B} relies on the minimum reduced cost of non-basic variables

$$
\boldsymbol{\pi}^{\top}=\mathbf{c}_{B}^{\top} \mathbf{A}_{B}^{-1} \quad \bar{c}_{j}=c_{j}-\pi^{\top} \mathbf{a}_{j}, \quad \forall j \in N
$$

$$
\bar{c}_{j}=0, \forall j \in B: \quad \text { Pricing for } j \in N \text { (NON-BASIC VARIABLES) }
$$

Selection of an entering variable into basis \boldsymbol{A}_{B} relies on the minimum reduced cost of non-basic variables

$$
\boldsymbol{\pi}^{\top}=\mathbf{c}_{B}^{\top} \mathbf{A}_{B}^{-1} \quad \bar{c}_{j}=c_{j}-\pi^{\top} \mathbf{a}_{j}, \quad \forall j \in N
$$

Find the minimum reduced cost value μ (Optimal if $\mu \geq 0$)

$$
\begin{aligned}
\max & \mu \\
& \mu \leq c_{j}-\pi^{\top} \mathbf{a}_{j}, \quad \forall j \in N \quad\left[y_{j}\right]
\end{aligned}
$$

*** $\quad \mu$ is the smallest reduced cost (given π). ${ }^{* * *}$

$$
\bar{c}_{j}=0, \forall j \in B: \quad \text { Pricing for } j \in N \text { (NON-BASIC VARIABLES) }
$$

Selection of an entering variable into basis A_{B} relies on the minimum reduced cost of non-basic variables

$$
\boldsymbol{\pi}^{\top}=\mathbf{c}_{B}^{\top} \mathbf{A}_{B}^{-1} \quad \bar{c}_{j}=c_{j}-\boldsymbol{\pi}^{\top} \mathbf{a}_{j}, \quad \forall j \in N
$$

Find the minimum reduced cost value μ (Optimal if $\mu \geq 0$)

$$
\begin{aligned}
\max & \mu \\
\mu & \leq c_{j}-\pi^{\top} \mathbf{a}_{j}, \quad \forall j \in N \quad\left[y_{j}\right]
\end{aligned}
$$

*** $\quad \mu$ is the smallest reduced cost (given π). ${ }^{* * *}$

EqUIVALENT TO FINDING A CONVEX COMBINATION OF NON-BASIC VARIABLES

$$
\begin{aligned}
& \mu=\min \begin{array}{l}
\sum_{j \in N} \bar{c}_{j} y_{j} \\
\sum_{j \in N} y_{j}
\end{array} \quad=1 \\
& y_{j} \geq 0, \quad \forall j \in N
\end{aligned}
$$

y^{0} in the Primal Simplex
Direction $\mathbf{y}^{0} \in \mathbb{R}^{n}:$
the selected entering variable,
the non-selected non-basic variables (they remain at 0), and the basic ones.

Step size computed such that $\mathbf{x}^{1}:=\mathbf{x}^{0}+\rho^{0} \mathbf{y}^{0} \geq \mathbf{0}$.

LEFT MULTIPLICATION BY BASIS INVERSE \mathbf{A}_{B}^{-1}

$$
\begin{array}{lllllllllrrrr}
\boldsymbol{x}^{0} \quad 30 & 25 & 50 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 185=c^{T} x^{o} \\
& & & & & & 0.4 & 0.3 & 0.3
\end{array}
$$

Primal Simplex tableau

*** Changes on at most $m+1$ components. ***

Observation \# 3 : Structures

Positive Edge strategy

*** Changes on at most $p+1$ components. ${ }^{* * *}$ Non-degenerate pivot.

Positive Edge : identification in $O(m)$

Speedup > 2 for LPs with a degeneracy level above 25%

Vectors and matrices are written in bold face.
$I_{\ell}:$ the $\ell \times \ell$ identity matrix.
$\mathbf{0}$ (1) : a vector/matrix with all zeros (ones) entries of appropriate dimensions. $\mathbf{A}_{R C}$: sub-matrix of \mathbf{A} containing the rows and columns indexed by R and C. Basis A_{B}, inverse $A_{B}^{-1}, \mathbf{c}_{B}^{\top} \mathbf{x}_{B}, A_{B} \mathbf{x}_{B}, \boldsymbol{\pi}=\mathbf{c}_{B} \mathbf{A}_{B}^{-1} \ldots$ $\mathbf{I}_{F}<\mathbf{x}_{F}<\mathbf{u}_{F}, \mathbf{x}_{L}=\mathbf{I}_{L}, \mathbf{x}_{U}=\mathbf{u}_{U}$

UsEFUL DECOMPOSITION OF $\mathbf{x} \in \mathbb{R}^{n}$ IN $\mathbf{A x}=\mathbf{b}, \quad \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}$

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{F} \\
\mathbf{x}_{L} \\
\mathbf{x}_{U}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{B} \\
\mathbf{x}_{N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{F} \\
\mathbf{x}_{B_{L}} \\
\mathbf{x}_{B_{U}} \\
\mathrm{x}_{N_{L}} \\
\mathrm{x}_{N_{U}}
\end{array}\right]
$$

For $\emptyset \subseteq S \subseteq B: \mathbf{x}=\left[\begin{array}{c}\mathbf{x}_{S} \\ \mathbf{x}_{\bar{S}}\end{array}\right]=\left[\begin{array}{c}\mathbf{x}_{S_{F}} \\ \mathbf{x}_{S_{L}} \\ \mathbf{x}_{S_{F}} \\ \mathbf{x}_{\bar{S}_{U}} \\ \mathrm{x}_{\bar{S}_{L}} \\ \mathrm{x}_{\bar{S}_{U}}\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}\mathbf{x}_{\emptyset} \\ \mathbf{x}\end{array}\right]=\left[\begin{array}{c}\mathbf{x}_{F} \\ \mathbf{x}_{L} \\ \mathrm{x}_{U}\end{array}\right]$

Dual Guided Pivot Rules for LPs

Generic Algorithm with single parameter set $S, \quad \emptyset \subseteq S \subseteq B$

(1) Let $k=0$ and assume a feasible basic solution \mathbf{x}^{k} to LP (standard form).
(2) Select $S \subseteq B$.

$$
\begin{array}{rr}
z^{\star}:= & \min \mathbf{c}_{S}^{\top} \mathbf{x}_{S}+\mathbf{c}_{\bar{S}}^{\top} \mathbf{x}_{\bar{S}} \\
\text { st. } & \mathbf{A}_{S}^{\top} \mathbf{x}_{S}+\mathbf{A}_{\bar{S}}^{\top} \mathbf{x}_{\bar{S}}=\mathbf{b} \\
& \mathbf{x}_{S}, \mathbf{x}_{\bar{S}} \geq \mathbf{0}
\end{array}
$$

(3) From \mathbf{A}_{S}, retrieve an $s \times s$ basis $\mathrm{A}_{R S}$ for row-set R.

$$
\begin{array}{rrl}
z^{\star}:= & \min \mathbf{c}_{S}^{\top} \mathbf{x}_{S}+\mathbf{c}_{\bar{S}}^{\top} \mathbf{x}_{\bar{S}} \\
\text { st. } & \mathbf{A}_{R S}^{\top} \mathbf{x}_{S}+\mathbf{A}_{R \bar{S}}^{\top} \mathbf{x}_{\bar{S}}=\mathbf{b}_{R} & {\left[\boldsymbol{\pi}_{R}\right]} \\
& \mathbf{A}_{Z S}^{\top} \mathbf{x}_{S}+\mathbf{A}_{Z \bar{S}}^{\top} \mathbf{x}_{\bar{S}}=\mathbf{b}_{Z} & {\left[\pi_{Z}\right]} \\
& \mathbf{x}_{S}, \mathbf{x}_{\bar{S}} \geq \mathbf{0}
\end{array}
$$

(4) Fix π_{R} in row-set $R ; \pi_{z}$ is free.
(3) Determine the smallest reduced cost μ_{S}^{k}.

$$
\mu_{S}^{k}:=\max \mu \quad \text { st. } \mu \leq c_{j}-\boldsymbol{\pi}_{R}^{\top} \mathbf{a}_{R j}-\pi_{Z}^{\top} \mathbf{a}_{Z j}, \quad \forall j
$$

If $\mu_{S}^{k} \geq 0$, STOP. Current solution \mathbf{x}^{k} is optimal for LP.
(6) Retrieve direction $\mathbf{y}_{S}^{k} \in \mathbb{R}^{n}$ and compute its maximum step-size ρ_{S}^{k}.
(1) Update $\mathbf{x}^{k+1}:=\mathbf{x}^{k}+\rho_{S}^{k} \mathbf{y}_{S}^{k} ; z^{k+1}:=z^{k}+\rho_{S}^{k} \mu_{S}^{k} ; k:=k+1$.
(8) Goto Step 2.

Dual Guided Pivot Rules for LPs

LINEAR PROGRAM $L P$

$$
\begin{array}{rr}
z^{\star}:= & \min \mathbf{c}^{\top} \mathbf{x} \\
\text { st. } & \mathbf{A} \mathbf{x}=\mathbf{b} \\
& \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

Dual Guided Pivot Rules for LPs

LINEAR PROGRAM $L P$

$$
\begin{array}{rrr}
z^{\star}:= & \min \mathbf{c}^{\top} \mathbf{x} \\
\text { st. } & \mathbf{A} \mathbf{x} & =\mathbf{b} \\
& \mathbf{I} \leq \mathbf{x} & \leq \mathbf{u}
\end{array}
$$

Generic Algorithm with single parameter set $S, \emptyset \subseteq S \subseteq B$

(1) Let $k=0$ and assume a feasible basic solution \mathbf{x}^{k} to LP.
(2) Select $\emptyset \subseteq S \subseteq B$.
(3) From \mathbf{A}_{S}, retrieve $\mathbf{A}_{R S}$ and construct residual problem $\operatorname{LP} S_{S}\left(\mathbf{x}^{k}\right)$.
(1) Fix dual variables in row-set R : π_{R}.
(6) Determine the value of the smallest reduced cost μ_{S}^{k}. If $\mu_{S}^{k} \geq 0$, STOP. Current solution x^{k} is optimal for LP.
(6) Retrieve direction $\mathbf{y}_{S}^{k} \in \mathbb{R}^{n}$ and compute its maximum step-size ρ_{S}^{k}.
(1) Update $\mathbf{x}^{k+1}:=\mathbf{x}^{k}+\rho_{S}^{k} \mathbf{y}_{S}^{k}$;

$$
z^{k+1}:=z^{k}+\rho_{S}^{k} \mu_{S}^{k}
$$

$$
k:=k+1
$$

(8) Goto Step 2.

Assume a feasible solution $x^{k}=\left[\begin{array}{c}x_{F}^{k} \\ x_{L}^{k} \\ x_{U}^{k}\end{array}\right]$
 $$
\mathbf{x}:=\mathbf{x}^{k}+\mathbf{y}, \quad \mathbf{y} \in \mathbb{R}^{n}
$$

$$
\begin{aligned}
& \text { ASSUME A FEASIBLE SOLUTION } x^{k}=\left[\begin{array}{c}
x_{F}^{k} \\
x_{L}^{k} \\
x_{U}^{k}
\end{array}\right] \\
& \mathbf{x}: \\
& :=\mathbf{x}^{k}+\mathbf{y}, \quad \mathbf{y} \in \mathbb{R}^{n} \\
& \quad=\mathbf{x}^{k}+(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}}), \quad \overrightarrow{\mathbf{y}}, \overleftarrow{\mathbf{y}} \geq \mathbf{0}, \quad \overrightarrow{\mathbf{y}}^{\top} \overleftarrow{\mathbf{y}}=0, \quad \overrightarrow{\mathbf{y}} \leq \overrightarrow{\mathbf{r}}^{k}, \quad \overleftarrow{\mathbf{y}} \leq \overleftarrow{\mathbf{r}}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Assume a feasible solution } x^{k}=\left[\begin{array}{l}
x_{F}^{k} \\
x_{L}^{k} \\
x_{U}^{k}
\end{array}\right] \\
& \begin{aligned}
\mathbf{x} & :=\mathbf{x}^{k}+\mathbf{y}, \quad \mathbf{y} \in \mathbb{R}^{n} \\
& =\mathbf{x}^{k}+(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}}), \\
& =\mathbf{x}^{k}+\left(\left[\begin{array}{c}
\overrightarrow{\mathbf{y}}_{F} \\
\overrightarrow{\mathbf{y}}_{L} \\
\overrightarrow{\mathbf{y}}
\end{array}\right]-\left[\begin{array}{c}
\overleftarrow{\mathbf{y}}_{F} \\
\overleftarrow{\mathbf{y}}_{L} \\
\overleftarrow{\mathbf{y}}_{U}
\end{array}\right]\right) ; \quad \overrightarrow{\mathbf{y}}, \overleftarrow{\mathbf{y}} \geq \mathbf{0} \geq \mathbf{0}, \quad \overrightarrow{\mathbf{y}}^{\top} \overleftarrow{\mathbf{y}}=0, \quad \overrightarrow{\mathbf{y}} \leq \overrightarrow{\mathbf{r}}^{\top}, \quad \overleftarrow{\mathbf{y}} \leq \overleftarrow{\mathbf{r}}^{k}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Residual problem } L P\left(\mathrm{x}^{k}\right) ; \quad \mathrm{x}:=\mathrm{x}^{k}+(\overrightarrow{\mathrm{y}}-\overleftarrow{\mathrm{y}}) \text { (Change of variables) } \\
& z^{\star}:=\min \quad \mathbf{c}^{\top} \mathbf{x}^{k}+\mathbf{c}^{\top}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}}) \\
& \text { st. } \mathbf{A} \mathbf{x}^{k}+\mathbf{A}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}})=\mathbf{b} \\
& \mathbf{0} \leq \overrightarrow{\mathbf{y}} \leq \overrightarrow{\mathbf{r}}^{k} \\
& \mathbf{0} \leq \overleftarrow{\mathbf{y}} \leq \grave{\mathbf{r}}^{k}
\end{aligned}
$$

Residual problem $L P\left(\mathrm{x}^{k}\right) ; \quad \mathrm{x}:=\mathrm{x}^{k}+(\overrightarrow{\mathrm{y}}-\overleftarrow{\mathrm{y}})$ (Change of variables)

$$
\begin{aligned}
z^{\star}:=\min \quad \mathbf{c}^{\top} \mathbf{x}^{k}+\quad \mathbf{c}^{\top}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}}) \\
\text { st. } \quad \mathbf{A} x^{k}+\begin{array}{r}
\mathbf{A}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}})=\mathbf{b} \\
\\
\\
\\
\\
\\
\\
\\
\\
\mathbf{0} \leq \overrightarrow{\mathbf{y}} \leq \overrightarrow{\mathbf{r}}^{k} \leq \overleftarrow{\mathbf{r}}^{k}
\end{array}
\end{aligned}
$$

Residual problem $L P\left(x^{k}\right)$

$$
\begin{array}{cc}
z^{\star}:=\mathbf{c}^{\top} \mathbf{x}^{k}+\min & \mathbf{c}^{\top}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}}) \\
\text { st. } & \mathbf{A}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}})=\mathbf{0} \\
& \mathbf{0} \leq \overrightarrow{\mathbf{y}} \leq \overrightarrow{\mathbf{r}}^{k} \\
& \mathbf{0} \leq \overleftarrow{\mathbf{y}} \leq \overleftarrow{\mathbf{r}}^{k}
\end{array}
$$

$$
\begin{aligned}
& \text { Residual problem with } S=F, \quad \bar{S}=L \cup U \\
& z^{\star}:=\mathbf{c}^{\top} \mathbf{x}^{k}+ \\
& \min \\
& \text { st. } \\
& \mathbf{c}_{F}^{\top}\left(\overrightarrow{\mathbf{y}}_{F}-\overleftarrow{\mathbf{y}}_{F}\right)+\mathbf{c}_{L}^{\top}\left(\overrightarrow{\mathbf{y}}_{L}\right)-\mathbf{c}_{U}^{\top}\left(\overleftarrow{\mathbf{y}}_{U}\right) \\
& \mathbf{A}_{F}\left(\overrightarrow{\mathbf{y}}_{F}-\overleftarrow{\mathbf{y}}_{F}\right)+\mathbf{A}_{L}\left(\overrightarrow{\mathbf{y}}_{L}\right)-\mathbf{A}_{U}\left(\overleftarrow{\mathbf{y}}_{U}\right)=\mathbf{0} \\
& \overrightarrow{\mathbf{y}}_{F} \geq \mathbf{0}, \overleftarrow{\mathbf{y}}_{F} \geq \mathbf{0}, \quad \overrightarrow{\mathbf{y}}_{L} \geq \mathbf{0}, \quad \overleftarrow{\mathbf{y}}_{U} \geq \mathbf{0} \\
& \overrightarrow{\mathbf{y}}_{F} \leq \overrightarrow{\mathbf{r}}_{F}, \overleftarrow{\mathbf{y}}_{F} \leq \overleftarrow{\mathbf{r}}_{F}, \quad \overrightarrow{\mathbf{y}}_{L} \leq \overrightarrow{\mathbf{r}}_{L}, \quad \overleftarrow{\mathbf{y}}_{U} \leq \overleftarrow{\mathbf{r}}_{U}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Residual problem with } S=B \text { (basic), } \bar{S}=N \text { (non-basic) } \\
& \mathbf{c}^{\top} \mathbf{x}^{k}+\quad \min \mathbf{c}_{B}^{\top}\left(\overrightarrow{\mathbf{y}}_{B}-\overline{\mathbf{y}}_{B}\right)+\quad \mathbf{c}_{N_{L}}^{\top} \overrightarrow{\mathbf{y}}_{N_{L}}-\mathbf{c}_{N_{U}}^{\top} \overline{\mathbf{y}}_{N_{U}} \\
& \text { st. } \mathbf{A}_{B}\left(\overrightarrow{\mathbf{y}}_{B}-\bar{y}_{B}\right)+\quad \mathbf{A}_{N_{L}} \overrightarrow{\mathrm{y}}_{N_{L}}-\mathbf{A}_{N_{U}} \overline{\mathbf{y}}_{N_{U}}=\mathbf{0} \\
& \overrightarrow{\mathrm{y}}_{B} \geq 0, \overline{\mathrm{y}}_{B} \geq 0 \quad \overrightarrow{\mathrm{y}}_{N_{L}} \geq 0, \overline{\mathrm{y}}_{N_{U}} \geq 0 \\
& \overrightarrow{\mathbf{y}}_{F} \leq \overrightarrow{\mathbf{r}}_{F}, \overline{\mathbf{y}}_{F} \leq \stackrel{\grave{r}}{F} \\
& \overleftarrow{\mathbf{y}}_{B_{L}} \leq \mathbf{0}, \overrightarrow{\mathbf{y}}_{B_{U}} \leq \mathbf{0} \quad \overrightarrow{\mathbf{y}}_{N_{L}} \leq \overrightarrow{\mathbf{r}}_{N_{L}}, \overline{\mathbf{y}}_{N_{U}} \leq \overline{\mathbf{r}}_{N_{U}}
\end{aligned}
$$

$$
B=F \cup B_{L} \cup B_{U} ; \quad N=N_{L} \cup N_{U}
$$

For $\emptyset \subseteq S \subseteq B$, find $\mathbf{y}^{k}=\left[\begin{array}{c}\mathbf{y}_{S}^{k} \\ \mathbf{y}_{\bar{S}}^{k}\end{array}\right]=\left[\begin{array}{c}\left(\overrightarrow{\mathbf{y}}_{S}^{k}-\grave{\mathbf{y}}_{S}^{k}\right) \\ \left(\overrightarrow{\mathrm{y}}_{\bar{S}}^{k}-\overleftarrow{\mathbf{y}}_{\bar{S}}^{k}\right)\end{array}\right]$ of min reduced cost μ^{k}.
For basic columns \mathbf{A}_{S}, retrieve a partial basis $\mathbf{A}_{R S}$, a set of s independent rows.

$$
\mathbf{T}=\left[\begin{array}{cc}
\mathbf{A}_{R S} & 0 \\
\mathbf{A}_{Z S} & \mathbf{I}_{m-s}
\end{array}\right] \quad \mathbf{T}^{-1}=\left[\begin{array}{cl}
\mathbf{A}_{R S}^{-1} & \mathbf{0} \\
-\mathbf{A}_{Z S} \mathbf{A}_{R S}^{-1} & \mathbf{I}_{m-s}
\end{array}\right]
$$

For $\emptyset \subseteq S \subseteq B$, find $\mathbf{y}^{k}=\left[\begin{array}{c}\mathbf{y}_{S}^{k} \\ \mathbf{y}_{\bar{S}}^{k}\end{array}\right]=\left[\begin{array}{c}\left(\overrightarrow{\mathbf{y}}_{S}^{k}-\grave{\mathbf{y}}_{S}^{k}\right) \\ \left(\overrightarrow{\mathrm{y}}_{\bar{S}}^{k}-\overleftarrow{\mathbf{y}}_{\bar{S}}^{k}\right)\end{array}\right]$ of min reduced cost μ^{k}.
For basic columns \mathbf{A}_{S}, retrieve a partial basis $\boldsymbol{A}_{R S}$, a set of s independent rows.

$$
\mathbf{T}=\left[\begin{array}{cc}
\mathbf{A}_{R S} & 0 \\
\mathbf{A}_{Z S} & \mathbf{I}_{m-s}
\end{array}\right] \quad \mathbf{T}^{-1}=\left[\begin{array}{cl}
\mathbf{A}_{R S}^{-1} & \mathbf{0} \\
-\mathbf{A}_{Z S} \mathbf{A}_{R S}^{-1} & \mathbf{I}_{m-s}
\end{array}\right]
$$

Indeed, $\quad \mathbf{T}$ is a basis of \mathbb{R}^{m}.

$$
\begin{gathered}
\emptyset \subseteq S \subseteq B \\
\text { Perform } \mathbf{T}^{-1} \mathbf{A}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}})=\mathbf{0}
\end{gathered}
$$

A block angular structure appears after the transformation by $\mathbf{T}^{\mathbf{- 1}}$.

Observe $\overline{\mathbf{c}}_{s}=\mathbf{0}$ (basic variables).
Master basis $\mathbf{I}_{s} . \quad$ DW subproblem in red.

Step 5 Find minimum Reduced cost μ_{S}^{k}

Pricing of the variables

$S \subseteq B$, hence $\overline{\mathbf{c}}_{S}=\mathbf{0}$.
Therefore pricing of $\overrightarrow{\mathrm{y}}_{\bar{S}}$ and $\overleftarrow{y}_{\bar{S}}$ needed to get partial direction $\left(\overrightarrow{\mathrm{y}}_{\bar{S}}^{k}-\overleftarrow{y}_{\bar{S}}^{k}\right)$
followed by impact on $\left(\overrightarrow{\mathbf{y}}_{S}^{k}-\overleftarrow{\mathbf{y}}_{S}^{k}\right)$ to complete direction $\mathbf{y}^{k}=\left[\begin{array}{l}\mathbf{y}_{S}^{k} \\ \mathbf{y}_{\bar{S}}^{k}\end{array}\right]$.
Primal/dual formulations of the pricing $\quad \psi_{R}^{\top}=\mathbf{c}_{S}^{\top} \mathbf{A}_{R S}^{-1}$

$$
\begin{aligned}
\max \mu \text { st. } \mu \mathbf{1}^{\top} & \leq \mathbf{c}_{\bar{S}}^{\top}-\boldsymbol{\psi}_{R}^{\top} \mathbf{A}_{R \bar{S}}-\psi_{Z}^{\top} \overline{\mathbf{A}}_{Z \bar{S}} & {\left[\overrightarrow{\mathbf{y}}_{\bar{S}}\right] } \\
\mu \mathbf{1}^{\top} & \leq-\left(\mathbf{c}_{\bar{S}}^{\top}-\boldsymbol{\psi}_{R}^{\top} \mathbf{A}_{R \bar{S}}-\psi_{Z}^{\top} \overline{\mathbf{A}}_{Z \bar{S}}\right) & {\left[\overleftarrow{\mathbf{y}}_{\bar{S}}\right] }
\end{aligned}
$$

A CONVEX COMBINATION OF THE VARIABLES $\overrightarrow{\mathbf{y}}_{\bar{s}}$ and $\overline{\mathbf{y}}_{\bar{s}}$

$$
\begin{aligned}
& \mu=\min \left(\mathbf{c}_{\bar{S}}^{\top}-\psi_{R}^{\top} \mathbf{A}_{R \bar{S}}\right)\left(\overrightarrow{\mathrm{y}}_{\bar{S}}-\overleftarrow{\mathrm{y}}_{\bar{S}}\right) \\
& \text { st. } \\
& \mathbf{1}^{\top} \overrightarrow{\mathbf{y}}_{\bar{S}}+\mathbf{1}^{\top} \overleftarrow{\mathbf{y}}_{\bar{S}} \quad=1 \quad[\mu] \\
& \mathbf{A}_{z \bar{S}}\left(\overrightarrow{\mathbf{y}}_{\bar{S}}-\overleftarrow{\mathbf{y}}_{\bar{S}}\right)=\mathbf{0} \quad\left[\psi_{z}\right] \\
& \overrightarrow{\mathbf{y}}_{\bar{S}}, \overleftarrow{\mathbf{y}}_{\bar{S}} \geq \mathbf{0}, \overline{\mathbf{y}}_{\bar{S}_{L}} \leq \mathbf{0}, \overrightarrow{\mathbf{y}}_{\bar{S}_{U}} \leq \mathbf{0}
\end{aligned}
$$

*** Optimal solution: $\mu_{S}^{k}, \overrightarrow{\mathbf{y}}_{\bar{S}}^{k}$ and $\overleftarrow{y}_{\bar{S}}^{k}$. ***

... Complete direction ys

Given $\mu^{k}<0$ and $\left(\overrightarrow{\mathbf{y}}_{\bar{S}}^{k}-\overleftarrow{\mathbf{y}}_{\bar{S}}^{k}\right)$, find impacts on $\left(\overrightarrow{\mathbf{y}}_{S}^{k}-\overleftarrow{\mathbf{y}}_{S}^{k}\right)$.

$$
\begin{aligned}
\left(\overrightarrow{\mathbf{y}}_{S}-\overline{\mathbf{y}}_{S}\right)+\overline{\mathbf{A}}_{R \bar{s}}\left(\overrightarrow{\mathrm{y}}_{S}^{k}-\overline{\mathbf{y}}_{S}^{\kappa}\right)=\mathbf{0} \\
\overrightarrow{\mathbf{y}}_{S} \geq \mathbf{0}, \overline{\mathbf{y}}_{S} \geq \mathbf{0}
\end{aligned} \vec{y}_{j} \bar{y}_{j}=0, \quad \forall j \in S_{F}
$$

Direction y ${ }_{S}^{k}$
$\mathbf{y}_{S}^{k}=\left[\begin{array}{r}\left(\overrightarrow{\mathbf{y}}_{S}^{k}-\overleftarrow{\mathbf{y}}_{S}^{k}\right) \\ \left(\overrightarrow{\mathbf{y}}_{\bar{S}}^{k}-\overleftarrow{\mathbf{y}}_{\bar{S}}^{k}\right)\end{array}\right]=\left[\begin{array}{r}-\overline{\mathbf{A}}_{R \bar{S}}\left(\overrightarrow{\mathbf{y}}_{\bar{S}}^{k}-\overleftarrow{\mathbf{y}}_{\bar{S}}^{k}\right) \\ \left(\overrightarrow{\mathbf{y}}_{\bar{S}}^{k}-\overleftarrow{\mathbf{y}}_{\bar{S}}^{k}\right)\end{array}\right]:\left[\begin{array}{r}\text { Impact level } \\ \text { (MP) } \\ \text { Pricing level } \\ (S P)\end{array}\right]$
$\overrightarrow{\mathbf{y}}_{S}^{k}, \overleftarrow{\mathbf{y}}_{S}^{k}$ take positive and negative parts of $-\overline{\mathbf{A}}_{R \bar{S}}\left(\overrightarrow{\mathrm{y}}_{\bar{S}}^{k}-\overleftarrow{\mathbf{y}}_{\bar{S}}^{k}\right)$, respectively.

Step 6 Compute maximum step-size ρ_{S}^{k}

$$
\begin{aligned}
& \rho\left[\begin{array}{c}
\overrightarrow{\mathbf{y}}_{S_{F}}^{k} \\
\overrightarrow{\mathbf{y}}_{S_{L}}^{k} \\
\overrightarrow{\mathbf{y}}_{S_{U}}
\end{array}\right] \leq\left[\begin{array}{c}
\overrightarrow{\mathbf{r}}_{S_{F}}^{k} \\
\overrightarrow{\mathbf{r}}_{S_{L^{\prime}}}^{k} \\
\mathbf{0}
\end{array}\right] ; \quad \rho\left[\begin{array}{c}
\overleftarrow{\mathbf{y}}_{S_{F}}^{k} \\
\overline{\mathbf{y}}_{S_{L}}^{k} \\
\overleftarrow{\mathbf{y}}_{S_{U}}^{k}
\end{array}\right] \leq\left[\begin{array}{c}
{\stackrel{r}{S_{S_{F}}}}_{k}^{0} \\
0 \\
{\stackrel{r}{S_{S_{U}}}}_{k}^{k}
\end{array}\right] \\
& \rho\left[\begin{array}{c}
\overrightarrow{\mathbf{y}}_{S_{F}}^{k} \\
\overrightarrow{\mathbf{y}}_{\bar{S}_{L}}^{k} \\
0
\end{array}\right] \leq\left[\begin{array}{c}
\overrightarrow{\mathbf{r}}_{S_{F}}^{k} \\
\overrightarrow{\mathbf{r}}_{S_{L}}^{k} \\
0
\end{array}\right] ; \quad \rho\left[\begin{array}{c}
\hat{\mathbf{y}}_{\bar{S}_{F}}^{k} \\
0 \\
\overline{\mathbf{y}}_{\bar{S}_{U}}^{k}
\end{array}\right] \leq\left[\begin{array}{c}
{ }_{\mathbf{r}}^{\bar{S}_{F}} \\
0 \\
0 \\
{\stackrel{\mathrm{r}}{\bar{S}_{U}}}_{k}^{k}
\end{array}\right]
\end{aligned}
$$

10 out of 12 types of residual upper bonds to verify. $\emptyset \subseteq S \subseteq B$

Step 6 Compute maximum step-size ρ_{S}^{k}

$$
\begin{gathered}
\rho\left[\begin{array}{c}
\overrightarrow{\mathbf{y}}_{F}^{k} \\
\overrightarrow{\mathbf{y}}_{B_{L}}^{k} \\
\overrightarrow{\mathbf{y}}_{B_{U}}
\end{array}\right] \leq\left[\begin{array}{c}
\overrightarrow{\mathbf{r}}_{F}^{k} \\
\overrightarrow{\mathbf{r}}_{B_{L}}^{k} \\
\mathbf{0}
\end{array}\right] ; \quad \rho\left[\begin{array}{c}
\overleftarrow{\mathbf{y}}_{F}^{k} \\
\overleftarrow{\mathbf{y}}_{B_{L}}^{k} \\
\overleftarrow{\mathbf{y}}_{B_{U}}^{k}
\end{array}\right] \leq\left[\begin{array}{c}
\overleftarrow{\mathbf{r}}_{F}^{k} \\
\mathbf{0} \\
\overleftarrow{\mathbf{r}}_{B_{U}}^{k}
\end{array}\right] \\
\rho\left[\overrightarrow{\mathbf{y}}_{N_{L}}^{k}\right] \leq\left[\overrightarrow{\mathbf{r}}_{N_{L}}^{k}\right] ; \quad \rho\left[\overleftarrow{\mathbf{y}}_{N_{U}}^{k}\right] \leq\left[\overleftarrow{\mathbf{r}}_{N_{U}}^{k}\right]
\end{gathered}
$$

8 types of residual upper bonds to verify for Primal Simplex. $\quad S=B$

Step 6 Compute maximum step-size ρ_{S}^{k}

$$
\rho\left[\begin{array}{c}
\overleftarrow{\mathbf{y}}_{P}^{k} \\
\overleftarrow{\mathbf{y}}_{Z}^{k}
\end{array}\right] \leq\left[\begin{array}{c}
\overleftarrow{\mathbf{r}}_{P}^{k} \\
\mathbf{0}
\end{array}\right]
$$

Only 2 types of residual upper bonds to verify for PS in standard form. $S=B=P \cup Z \quad$ (positive and zero variables)

Step 6 Compute maximum step-size ρ_{S}^{k}

$$
\rho\left[\begin{array}{c}
\overrightarrow{\mathbf{y}}_{F}^{k} \\
\overrightarrow{\mathbf{y}}_{L}^{k}
\end{array}\right] \leq\left[\begin{array}{c}
\overrightarrow{\mathbf{r}}_{F}^{k} \\
\overrightarrow{\mathbf{r}}_{L}^{k}
\end{array}\right] ; \quad \rho\left[\begin{array}{c}
\overline{\mathbf{y}}_{F}^{k} \\
\hat{\mathbf{y}}_{U}^{k}
\end{array}\right] \leq\left[\begin{array}{c}
\stackrel{\rightharpoonup}{\mathbf{r}}_{F}^{k} \\
\stackrel{\mathbf{r}}{U}_{k}^{k}
\end{array}\right]
$$

4 types of strictly positive residual upper bonds to verify in MMCC. $\quad S=\emptyset$

Step 6 Compute maximum step-size ρ_{S}^{k}

$$
\begin{aligned}
& \rho\left[\overrightarrow{\mathbf{y}}_{F}^{k}\right] \leq\left[\overrightarrow{\mathbf{r}}_{F}^{k}\right] ; \quad \rho\left[\overleftarrow{\mathbf{y}}_{F}^{k}\right] \leq\left[\overleftarrow{\mathbf{r}}_{F}^{k}\right] \\
& \rho\left[\overrightarrow{\mathbf{y}}_{L}^{k}\right] \leq\left[\overrightarrow{\mathbf{r}}_{L}^{k}\right] ; \quad \rho\left[\overleftarrow{\mathbf{y}}_{U}^{k}\right] \leq\left[\overleftarrow{\mathbf{r}}_{U}^{k}\right]
\end{aligned}
$$

4 types of strictly positive residual upper bonds to verify in IPS. $\quad S=F$

$$
\begin{aligned}
& \mathbf{T}=\left[\begin{array}{ll}
\mathbf{A}_{B} & \emptyset
\end{array}\right], \quad \mathbf{T}^{-1}=\left[\begin{array}{c}
\mathbf{A}_{B}^{-1} \\
\emptyset
\end{array}\right] \\
& B=F \cup B_{L} \cup B_{U} ; \quad N=N_{L} \cup N_{U}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{T}=\left[\begin{array}{ll}
\mathbf{A}_{B} & \emptyset
\end{array}\right], \quad \mathbf{T}^{-1}=\left[\begin{array}{c}
\mathbf{A}_{B}^{-1} \\
\emptyset
\end{array}\right] \\
& B=F \cup B_{L} \cup B_{U} ; \quad N=N_{L} \cup N_{U}
\end{aligned}
$$

Primal simplex method (Dantzig 1945)

$$
\begin{aligned}
& \mathbf{c}^{\top} \mathbf{x}^{k}+\min \mathbf{c}_{B}^{\top}\left(\overrightarrow{\mathbf{y}}_{B}-\overleftarrow{\mathbf{y}}_{B}\right)+\mathbf{c}_{N_{L}}^{\top} \overrightarrow{\mathbf{y}}_{N_{L}}-\mathbf{c}_{N_{U}}^{\top} \overleftarrow{\mathbf{y}}_{N_{U}} \\
& \text { st. } \quad\left(\overrightarrow{\mathbf{y}}_{B}-\overleftarrow{\mathbf{y}}_{B}\right)+\overline{\mathbf{A}}_{N_{L}} \overrightarrow{\mathbf{y}}_{N_{L}}-\overline{\mathbf{A}}_{N_{U}} \overleftarrow{\mathbf{y}}_{N_{U}}=\mathbf{0} \quad\left[\boldsymbol{\psi}^{\top}=\mathbf{c}_{B}\right] \\
& \overrightarrow{\mathbf{y}}_{B} \geq \mathbf{0}, \overleftarrow{\mathbf{y}}_{B} \geq \mathbf{0} \\
& \overrightarrow{\mathbf{y}}_{N_{L}} \geq \mathbf{0}, \overleftarrow{\mathbf{y}}_{N_{U}} \geq \mathbf{0} \\
& \overrightarrow{\mathbf{y}}_{F} \leq \overrightarrow{\mathbf{r}}_{F}, \overleftarrow{\mathbf{y}}_{F} \leq \overleftarrow{\mathbf{r}}_{F} \\
& \overleftarrow{\mathbf{y}}_{B_{L}} \leq \mathbf{0}, \overrightarrow{\mathbf{y}}_{B_{U}} \leq \mathbf{0} \overrightarrow{\mathbf{y}}_{N_{L}} \leq \overrightarrow{\mathbf{r}}_{N_{L}}, \overleftarrow{\mathbf{y}}_{N_{U}} \leq \overleftarrow{\mathbf{r}}_{N_{U}}
\end{aligned} \quad * \rho_{B} \geq 0 * ?
$$

Properties of PS

No equality constraints in the pricing problem.
Pricing contains - convex combination of the non-basic variables

- non-negativity restrictions (a cone).

Due to the step-size $* \rho_{B} \geq 0 *$, possible degenerate pivots.
Oscillation of μ_{B}; it may even not converge towards 0 .

Special case \#2 : $S=F \Rightarrow \bar{S}=L \cup U$

$$
\mathbf{T}=\left[\begin{array}{cc}
\mathbf{A}_{R F} & 0 \\
\mathbf{A}_{Z F} & \mathbf{I}_{m-r}
\end{array}\right], \quad \mathbf{T}^{-1}=\left[\begin{array}{cl}
\mathbf{A}_{R F}^{-1} & \mathbf{0} \\
-\mathbf{A}_{Z S} \mathbf{A}_{R F}^{-1} & \mathbf{I}_{m-r}
\end{array}\right] .
$$

Special case $\# 2: S=F \Rightarrow \bar{S}=L \cup U$

$\mathbf{T}=\left[\begin{array}{cc}\mathbf{A}_{R F} & \mathbf{0} \\ \mathbf{A}_{Z F} & \mathbf{I}_{m-r}\end{array}\right], \quad \mathbf{T}^{-\mathbf{1}}=\left[\begin{array}{cc}\mathbf{A}_{R F}^{-1} & \mathbf{0} \\ -\mathbf{A}_{Z S} \mathbf{A}_{R F}^{-1} & \mathbf{I}_{m-r}\end{array}\right]$.

Improved Primal Simplex method (Elhallaoui et al. 2011)

$\mathbf{c}^{\top} \mathbf{x}^{k}+\min$

$$
\mathbf{c}_{F}^{\top}\left(\overrightarrow{\mathbf{y}}_{F}-\overleftarrow{\mathbf{y}}_{F}\right)+\mathbf{c}_{L}^{\top} \overrightarrow{\mathbf{y}}_{L}-\mathbf{c}_{U}^{\top} \overleftarrow{\mathbf{y}}_{U}
$$

st.

$$
\left(\overrightarrow{\mathbf{y}}_{F}-\overleftarrow{\mathbf{y}}_{F}\right)+\overline{\mathbf{A}}_{R L} \overrightarrow{\mathbf{y}}_{L}-\overline{\mathbf{A}}_{R U} \overleftarrow{\mathbf{y}}_{U}=\mathbf{0} \quad\left[\psi_{R}=\mathbf{c}_{F}\right]
$$

$$
\overrightarrow{\mathbf{y}}_{F} \geq \mathbf{0}, \overleftarrow{\mathbf{y}}_{F} \geq \mathbf{0}
$$

$$
\begin{aligned}
& \overline{\mathbf{A}}_{Z L} \overrightarrow{\mathbf{y}}_{L}-\overline{\mathbf{A}}_{Z U} \overline{\mathbf{y}}_{U}=0 \quad\left[\psi_{Z}\right] \\
& \overrightarrow{\mathbf{y}}_{L} \geq \mathbf{0}, \overleftarrow{\mathbf{y}}_{U} \geq \mathbf{0}
\end{aligned}
$$

$$
\overrightarrow{\mathbf{y}}_{F} \leq \overrightarrow{\mathbf{r}}_{F}, \overleftarrow{\mathbf{y}}_{F} \leq \overleftarrow{\mathbf{r}}_{F}, \quad \overrightarrow{\mathbf{y}}_{L} \leq \overrightarrow{\mathbf{r}}_{L}, \overleftarrow{\mathbf{y}}_{U} \leq \overleftarrow{\mathbf{r}}_{U}
$$

Properties of IPS

f equality constraints in the master problem, $m-f$ in the pricing problem.
Non-degenerate pivots only ($\rho_{F}>0$).
$z^{0}>z^{1}>z^{2}>\cdots=z^{\star}$ cost strictly decreasing at each iteration ($\rho_{F}>0$).
Oscillation of μ_{F} but converging towards 0 .

$$
\text { Select } S=\emptyset \cdot \mathbf{T}=\left[\begin{array}{ll}
\emptyset & \mathbf{I}_{m}
\end{array}\right], \mathbf{T}^{-1}=\left[\begin{array}{c}
\emptyset \\
\mathbf{I}_{m}
\end{array}\right]
$$

Select $S=\emptyset . \mathbf{T}=\left[\begin{array}{ll}\emptyset & \mathbf{I}_{m}\end{array}\right], \mathbf{T}^{-1}=\left[\begin{array}{c}\emptyset \\ \mathbf{I}_{m}\end{array}\right]$

Minimum mean cycle-canceling algorithm adapted for LP

$$
\mathbf{c}^{\top} \mathbf{x}^{k}+\quad \min \quad \mathbf{c}^{\top}(\vec{y}-\overleftarrow{y})
$$

$$
\begin{aligned}
& \text { st. } \mathbf{A}(\overrightarrow{\mathrm{y}}-\overleftarrow{y})=\mathbf{0} \quad \text { Directions } \\
& \overrightarrow{\mathbf{y}}, \overleftarrow{\mathbf{y}} \geq \mathbf{0} \quad \text { in the cone } \\
& \overleftarrow{\mathbf{y}}_{L}, \overrightarrow{\mathbf{y}}_{U} \leq \mathbf{0} \quad \text { at vertex } \mathbf{x}^{k} \\
& \overrightarrow{\mathbf{y}}_{F}, \overleftarrow{\mathbf{y}}_{F}, \overrightarrow{\mathbf{y}}_{L}, \overleftarrow{\mathbf{y}}_{U} \quad \leq \overrightarrow{\mathbf{r}}_{F}^{k}, \overleftarrow{\mathbf{r}}_{F}^{k}, \overrightarrow{\mathbf{r}}_{L}^{k}, \overleftarrow{\mathbf{r}}_{U}^{k} \quad * \text { Step size } \rho_{\emptyset}>0 *
\end{aligned}
$$

Properties of MMCC

All equality constraints in the pricing problem.
Upper bounds in the master problem.
$z^{0}>z^{1}>z^{2}>\cdots=z^{\star}$ cost strictly decreasing at each iteration ($\rho_{\emptyset}>0$).
$\mu^{0} \leq \mu^{1} \leq \mu^{2} \leq \cdots=0 \quad$ smallest reduced cost non decreasing.
MMCC is strongly polynomial for network flow problems in $O(m n)$ phases. Goldberg and Tarjan (1989), Radzick and Goldberg (1994)

Computational results

Computational Results

- $S \cap\{L \cup U\} \neq \emptyset$: It may come up with degenerate pivots and not converge.
- Primal Simplex method (PS).

$$
S=B, * \rho_{B} \geq 0 *
$$

- $S \cap\{L \cup U\} \neq \emptyset$: It may come up with degenerate pivots and not converge.
- Primal Simplex method (PS).

$$
S=B, * \rho_{B} \geq 0 *
$$

- $\emptyset \subseteq S \subseteq F$: It ensures a non-degenerate pivot at every iteration.
- Improved Primal Simplex algorithm (IPS). $S=F, * \rho_{F}>0 *$

- $S \cap\{L \cup U\} \neq \emptyset$: It may come up with degenerate pivots and not converge.
- Primal Simplex method (PS).

$$
S=B, * \rho_{B} \geq 0 *
$$

- $\emptyset \subseteq S \subseteq F$: It ensures a non-degenerate pivot at every iteration.
- Improved Primal Simplex algorithm (IPS). $S=F, * \rho_{F}>0 *$
- Minimum mean cycle-canceling algorithm (MMCC) $S=\emptyset, * \rho_{\emptyset}>0 *$

- $S \cap\{L \cup U\} \neq \emptyset$: It may come up with degenerate pivots and not converge.
- Primal Simplex method (PS).

$$
S=B, * \rho_{B} \geq 0 *
$$

- $\emptyset \subseteq S \subseteq F$: It ensures a non-degenerate pivot at every iteration.
- Improved Primal Simplex algorithm (IPS). $S=F, * \rho_{F}>0 *$
- Minimum mean cycle-canceling algorithm (MMCC) $S=\emptyset, * \rho_{\emptyset}>0 *$ Strongly polynomial for network flow problems.

- $S \cap\{L \cup U\} \neq \emptyset$: It may come up with degenerate pivots and not converge.
- Primal Simplex method (PS). $S=B, * \rho_{B} \geq 0 *$
- $\emptyset \subseteq S \subseteq F$: It ensures a non-degenerate pivot at every iteration.
- Improved Primal Simplex algorithm (IPS). $S=F, * \rho_{F}>0 *$
- Minimum mean cycle-canceling algorithm (MMCC) $S=\emptyset, * \rho_{\emptyset}>0 *$ Strongly polynomial for network flow problems.
* $S \subset F$: Optimal direction y ${ }_{S}^{k}$ can be an interior ray.

MMCC:

non-extreme ray a-c-d

*** Imagine the same transformation is kept for a while...

- $\mathbf{T}:=\left[\boldsymbol{\Lambda}, \boldsymbol{\Lambda}^{\perp}\right], \quad$ where $\boldsymbol{\Lambda}$ is a set of independent columns.
$\bullet \boldsymbol{\Lambda}=\left[\begin{array}{l}\boldsymbol{\Lambda}_{R} \\ \boldsymbol{\Lambda}_{z}\end{array}\right]$, where $\boldsymbol{\Lambda}_{R}$ is a set of s independent rows of $\boldsymbol{\Lambda}$.
- $\mathbf{T}=\left[\begin{array}{cl}\boldsymbol{\Lambda}_{R} & \mathbf{0} \\ \boldsymbol{\Lambda}_{z} & \mathbf{I}_{m-s}\end{array}\right] \quad \mathbf{T}^{-\mathbf{1}}=\left[\begin{array}{cl}\boldsymbol{\Lambda}_{R}^{-1} & \mathbf{0} \\ \boldsymbol{\Lambda}_{z} \boldsymbol{\Lambda}_{R}^{-1} & \mathbf{I}_{m-s}\end{array}\right]$
- \mathbf{T}^{-1} splits row-space \mathbb{R}^{m} of $L P\left(\mathrm{x}^{k}\right)$ into two vector subspaces V and V^{\perp}.
- Vector subspace basis $\boldsymbol{\Lambda}$ spans V of dimension $0 \leq s \leq m$.
- Vector $\mathbf{a} \in \mathbf{V}$ if and only if $\overline{\mathbf{a}}_{z}=0$, where $\overline{\mathbf{a}}=\mathbf{T}^{-1} \mathbf{a}=\left[\begin{array}{c}\overline{\mathbf{a}}_{R} \\ 0\end{array}\right]$.
- $S \subseteq B$: index set of basic columns spanned by $\boldsymbol{\Lambda}$.
- Algorithmic properties derived according to subset S.

Dynamic Constraint Aggregation for Set Partitioning
(Elhallaoui et al. 2005)
The partition of the row-set is derived from the f groups of identical rows of A_{F}.

$$
\left(\begin{array}{llll}
1 & 1 & & \\
& 1 & 1 & \\
& & 1 & 1 \\
1 & & 1 & \\
1 & & & 1 \\
1 & 1 & & \\
& 1 & 1 & \\
1 & & & 1
\end{array}\right) \quad \mapsto\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & 1 & \\
& & & & 1 \\
1 & & & & \\
& 1 & & & \\
& & & & 1
\end{array}\right)
$$

Properties

$F \subseteq S \subseteq B$ for fractional solutions but $S=F$ (or $S=\emptyset$) for binary solutions.
Degenerate pivots may occur, $\rho \geq 0$, if $r>f$.

Residual problem $L P\left(\mathrm{x}^{k}\right)$

$$
\begin{array}{cc}
z^{\star}:=\mathbf{c}^{\top} \mathbf{x}^{k}+\min & \mathbf{c}^{\top}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}}) \\
\text { st. } & \mathbf{A}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}})=\mathbf{0} \\
& \mathbf{0} \leq \overrightarrow{\mathbf{y}} \leq \overrightarrow{\mathbf{r}}^{k} \\
& \mathbf{0} \leq \overleftarrow{\mathbf{y}} \leq \overleftarrow{\mathbf{r}}^{k}
\end{array}
$$

