Branch-price-and-cut algorithms for electric vehicle routing problems with time windows

Guy Desaulniers École Polytechnique de Montréal and GERAD, Canada Co-authors: Fausto Errico, Stefan Irnich, Michael Schneider

> Route 2014 Snekkersten, Denmark, June 4, 2014

Warning

This is the last talk of the workshop so I will skip some technical stuff to make it shorter

and maybe less boring

Warning

This is the last talk of the workshop so I will skip some technical stuff to make it shorter

and maybe less boring

Outline

- 2 Mathematical formulation
- Branch-price-and-cut algorithms
- 4 Computational results

5 Conclusions

Outline

- 2 Mathematical formulation
- Branch-price-and-cut algorithms
- 4 Computational results

5 Conclusions

-Introduction

Vehicle routing problem with time windows (VRPTW)

Definition

• Given

- A single depot with identical capacitated vehicles
- A set of customers with known demands and time windows

• Find vehicle routes such that

- All customer demands are met, each by a single vehicle
- Each route starts and ends at the depot
- · Each route satisfies vehicle capacity and time windows
- Total cost (distance) is minimized

Electric VRPTW (EVRPTW)

Definition

- Same as VRPTW except
 - Battery capacity and recharging stations
 - Battery consumption is a linear function of traveled distance
 - Recharging time is a linear function of the recharged quantity
 - Battery fully recharged overnight at depot
 - No recharging costs
 - Maximum route length (in distance traveled)

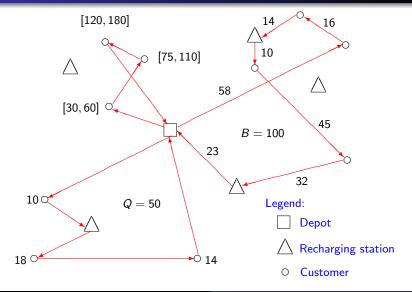
Four variants:

- S: Single recharge allowed per route
- M: Multiple recharges allowed per route
- F: Full recharges only
- V: Variable recharges allowed

Electric VRPTW (EVRPTW)

Definition

- Same as VRPTW except
 - Battery capacity and recharging stations
 - Battery consumption is a linear function of traveled distance
 - Recharging time is a linear function of the recharged quantity
 - Battery fully recharged overnight at depot
 - No recharging costs
 - Maximum route length (in distance traveled)


Four variants: SF, SV, MF, MV

- S: Single recharge allowed per route
- M: Multiple recharges allowed per route
- F: Full recharges only
- V: Variable recharges allowed

BPC for EVRPTW

-Introduction

Example of a solution

Literature

- Conrad and Figliozzi (2011)
 - Battery capacity with recharging possibility at certain customers
 - Fixed recharging time
 - Local search heuristic
- Erdogan and Miller-Hooks (2012)
 - Green VRP
 - No time windows, nor vehicle capacity
 - Limited vehicle autonomy with recharging stations
 - Fixed recharging time
 - Exact MIP approach and local search heuristic
- Schneider, Stenger, Goeke (2014)
 - Battery capacity with recharging stations
 - Recharging time depends on recharged quantity
 - Full recharges only
 - Variable neighborhood search combined with tabu search

Our goal is to develop exact algorithms for solving four variants of the EVRPTW: SF. SV, MF, and MV $\,$

Mathematical formulation

Outline

- 2 Mathematical formulation
- 3 Branch-price-and-cut algorithms
- 4 Computational results

5 Conclusions

Mathematical formulation

A path-flow model

A feasible route

- Starts and ends at the depot
- Does not visit a customer more than once
- Respects
 - Vehicle capacity
 - Time windows
 - Maximum length
 - Battery capacity
 - Visits recharging stations if needed
 - At most one recharge in S variants
 - Full recharges in F variants

-Mathematical formulation

A path-flow model (cont'd)

Notation

- N: Set of customers
- Ω : Set of feasible elementary o d paths in G (elementarity required only at customers)
- c_p : Cost of feasible path $p \in \Omega$
- a_{pi} : Binary parameter equal to 1 if customer $i \in N$ is visited in path $p \in \Omega$
- θ_p : Binary path-flow variable equal to 1 if path $p \in \Omega$ is selected

BPC for EVRPTW

Mathematical formulation

A path-flow model (cont'd)

$$\begin{array}{ll} \min & \sum_{\rho \in \Omega} c_{\rho} \theta_{\rho} & (1) & \text{total cost} \\ \text{s.t.} & \sum_{\rho \in \Omega} a_{\rho i} \theta_{\rho} = 1, & \forall i \in N & (2) & \text{visit each customer} \\ & \theta_{\rho} \in \{0, 1\}, & \forall p \in \Omega & (3) & \text{binary requirements} \end{array}$$

Remarks

- \bullet Route feasibility rules are implicitly taken into account in the definition of Ω
- Same model as for the VRPTW. Differs only by the definition of set Ω.

Mathematical formulation

A path-flow model (cont'd)

$$\begin{array}{ll} \min & \sum_{\rho \in \Omega} c_{\rho} \theta_{\rho} & (1) & \text{total cost} \\ \text{s.t.} & \sum_{\rho \in \Omega} a_{\rho i} \theta_{\rho} = 1, & \forall i \in N & (2) & \text{visit each customer} \\ & \theta_{\rho} \in \{0, 1\}, & \forall p \in \Omega & (3) & \text{binary requirements} \end{array}$$

Remarks

- \bullet Route feasibility rules are implicitly taken into account in the definition of Ω
- Same model as for the VRPTW. Differs only by the definition of set Ω.

Outline

- 2 Mathematical formulation
- Branch-price-and-cut algorithms
- 4 Computational results

5 Conclusions

Branch-price-and-cut

Branch-price-and-cut

- Column generation used to compute lower bounds
- Cutting planes added to strengthen linear relaxations
- Branching used to derive integer solutions

Column generation

- Master problem corresponds to the linear relaxation of the above model
- One subproblem that corresponds to an elementary shortest path problem with resource constraints

Subproblem

Defined on a directed network G = (N, A)

- Node set $N = C \cup R \cup \{o, d\}$
 - C: Set of customers
 - R: Set of recharging stations
 - {o, d}: Depot at start and end of the day
- Arc set $A \subset N \times N$
 - From o to each node in $C \cup R$
 - From each node in $C \cup R$ to d
 - From each node *i* in C ∪ R to each node *j* in C ∪ R if *i* ≠ *j* and *j* can be visited immediately after *i* according to time windows, vehicle capacity, and battery capacity

Subproblem definition

There is one subproblem (single depot and identical vehicles):

where \bar{c}_p is the reduced cost of variable θ_p :

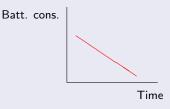
$$ar{c}_{m{
ho}}=c_{m{
ho}}-\sum_{i\inm{N}}a_{m{
ho}i}\pi_i=\sum_{(i,j)\inm{
ho}}(c_{ij}-\pi_i)=\sum_{(i,j)\inm{
ho}}ar{c}_{ij}$$

and π_i , $i \in N$, are the dual variables associated with constraints (2) and $\bar{c}_{ij} = c_{ij} - \pi_i$ is the "reduced cost" of arc (i, j)(assuming $\pi_i = 0$ if $i \notin N$)

Subproblem definition (cont'd)

- Subproblem corresponds to an elementary shortest path problem with resource constraints (ESPPRC) on network *G*
- Resources are required to impose
 - Vehicle capacity
 - Time windows
 - Battery capacity
 - Maximum route length
 - Elementarity
- Battery consumption can be reset (fully or partially) at recharging stations
- Recharging time depends on recharged quantity

Labeling algorithm


- ESPPRC can be solved by a labeling algorithm
 - Partial paths are represented by multi-dimensional resource vectors, called labels
 - From node *o*, labels are propagated forwardly through network *G* using resource extension functions (REFs)
 - Resource windows are checked at each node to discard infeasible partial paths
 - A dominance rule is applied to discard unpromising labels

Labeling for F variants

- A label contains the following components
 - Reduced cost
 - Load
 - Route length
 - Time
 - Battery consumption
 - Number of recharges (for SF variant)
- Standard REFs except on arcs leaving a node in R
 - Recharging time is computed and added
 - Battery consumption must be reset to 0
- Standard dominance rule (lower battery consumption yields lower recharging time)

Labeling for V variants

- A label contains the same components except that
 - Battery consumption is a function of the time once a recharge station has been visited

• REFs must be adapted to extend these dependent resources

- Can be truncated from the left if waiting occurs before a TW
- Must be truncated from the right if TW upper bound is exceeded
- Adapted dominance rule that compares line segments

Bidirectional labeling for F variants

- When extending labels backward
 - Consider all previous components
 - Recharging time at a recharging station depends on unknown battery consumption
 - Requires two additional components:
 - Available time for next recharge
 - Unavoidable waiting time before next recharge
- Adapted backward REFs and dominance rule

Bidirectional labeling for F variants

- When extending labels backward
 - Consider all previous components
 - Recharging time at a recharging station depends on unknown battery consumption
 - Requires two additional components:
 - Available time for next recharge
 - Unavoidable waiting time before next recharge
- Adapted backward REFs and dominance rule

Bidirectional labeling for V variants

- Backward labeling similar to the variant F case except that you must consider again battery consumption as a function of time
- Adapted REFs and dominance rule

Other acceleration techniques

- ng-paths (Baldacci et al., 2011)
 - Allow certain cycles
 - Less restrictive dominance rule (increased number of dominated labels)
 - Possibly weaker lower bounds but shorter CPU times for the subproblems
- Heuristic pricing first (network with less arcs and dominance on a subset of the customer resources)

Valid inequalities

Two families of inequalities

- Two-path inequalities (Kohl et al., 1999)
 - S: Subset of customers for which it can be proven that it cannot be serviced by a single vehicle
 - Cut for *S* imposes a minimum number of two vehicles entering *S*
 - Separation by enumeration of subsets *S* that considers time windows and battery capacity
- Subset-row inequalities (Jepsen et al., 2008)
 - S: subset of three customers
 - Cut for S imposes a maximum of one route visiting at least two customers in S
 - An additional resource for each cut is required in the subproblem

Branching

Branch on

- Arc flow
- Total number of vehicles (to come)
- Total number of recharges (to come)

Branching

Branch on

- Arc flow
- Total number of vehicles (to come)
- Total number of recharges (to come)

Computational results

Outline

- 2 Mathematical formulation
- Branch-price-and-cut algorithms
- 4 Computational results

5 Conclusions

Computational results

Instances

Derived from Solomon's instances (as in Schneider, 2012),

- R1, C1, RC1 instances only (relatively narrow adjusted time windows)
- A few customers moved closer to the depot randomly to ensure feasibility for the S variants
- Instances with 25, 50 and 100 customers (total: 29×3)
- In each instance, the same 21 recharging stations
- Battery capacity allows to travel 60% of the average route length in the VRPTW solution
- Full recharge from empty takes about 3 times the service time at a customer

Computational experiments

- Performed on a processor Intel Core i7-4770 CPU @ 3.40 GHz
- One core used
- One-hour time limit

Computational results

Main results (preliminary)

	Variant SF			Variant MF				
	No.	Avg.	Avg. No.	Avg. No.	No.	Avg.	Avg. No.	Avg. No.
Instances	Solved	Time (s)	Veh.	Rch./Veh	Solved	Time (s)	Veh.	Rch./Veh
25 cust.	29	4	6.4	0.70	29	24	6.1	0.89
50 cust.	26	> 530	9.7	0.73	28	> 330	9.2	0.90
100 cust.	10	> 2,526	15.1	0.60	14	> 2,282	15.6	0.84
all	65	> 1,020	9.1	0.69	71	> 879	9.4	0.88

	Variant SV				Variant MV			
	No.	Avg.	Avg. No.	Avg. No.	No	Avg.	Avg. No.	Avg. No.
Instances	Solved	Time (s)	Veh.	Rch./Veh	Solved	Time (s)	Veh.	Rch./Veh
25 cust.	29	3	6.4	0.70	29	4	6.1	0.94
50 cust.	27	> 368	9.2	0.76	27	> 403	8.9	1.04
100 cust.	10	> 2,497	15.1	0.58	12	> 2,559	15.1	1.05
all	66	> 956	8.8	0.71	68	> 989	8.8	1.00

Cost comparison between variants

	SF	to SV	MF	to MV
	No.	Avg. Cost	No.	Avg. Cost
Instances	Common	Decrease (%)	Common	Decrease (%)
25 cust.	29	0.9	29	1.6
50 cust.	26	1.1	27	2.0
100 cust.	8	0.8	11	2.1
all	63	1.0	67	1.8

	SF	to MF	SV	' to MV
	No. Avg. Cost		No.	Avg. Cost
Instances	Common	Decrease (%)	Common	Decrease (%)
25 cust.	29	1.6	29	2.3
50 cust.	25	2.9	26	3.5
100 cust.	9	1.5	7	2.6
all	63	2.1	62	2.8

Bidirectional vs monodirectional labeling

	MF	MF: Mono. to Bid.				
	No.	Avg. Time	Add.			
Instances	Common	Decrease (%)	Solved			
25 cust.	29	18.1	0			
50 cust.	26	36.9	2			
100 cust.	9	44.8	5			
all	64	29.5	7			

MV: Mono. to Bid.

	No.	Avg. Time	Add.
Instances	Common	Decrease (%)	Solved
25 cust.	29	35.0	0
50 cust.	26	51.8	1
100 cust.	5	62.6	7
all	60	44.6	8

Outline

- 2 Mathematical formulation
- Branch-price-and-cut algorithms
- 4 Computational results

Conclusions

• We presented the first exact algorithms for different variants of the EVRPTW

• Work in progress: to come

- Other branching rules
- Fast local search heuristic to generate columns
- Configuration of strategies and parameter values
- Tests on instances in the 200 series (wide time windows)

hank you!

Questions?

Conclusions

- We presented the first exact algorithms for different variants of the EVRPTW
- Work in progress: to come
 - Other branching rules
 - Fast local search heuristic to generate columns
 - Configuration of strategies and parameter values
 - Tests on instances in the 200 series (wide time windows)

hank you!

Questions?

Conclusions

- We presented the first exact algorithms for different variants of the EVRPTW
- Work in progress: to come
 - Other branching rules
 - Fast local search heuristic to generate columns
 - Configuration of strategies and parameter values
 - Tests on instances in the 200 series (wide time windows)

Thank you!

Questions?