VRP with Time Windows Considering Driving and Working Hour Regulations

Tom Van Woensel, Said Dabia, Emrah Demir, Nico Dellaert, Maryam SteadieSeifi

Twitter: @tomvanwoensel Website: tomvanwoensel.com

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

The play of today

- Act I
 - The EU Regulations
- Act II
 - The Challenges
- Act III
 - Mathematical Formulation
- Act IV
 - Solution Methodology
- Act V
 - Computational Results
- Epilogue

Act I: The EU Regulations

Regulation (EC) No. 561/2006 of the E.U. for "driving" regulations

&

Directive 2002/15/EC of the E.U. for "working" regulations

- Calendar Week
- Breaks (Short and Long)
- Rests (Short and Long)
- Regular Daily Rests
- Splitting Rests
- Reduced Daily Rests
- Weekly Rests
- Interval Driving / Working Time
- Daily Driving / Working Time
- Weekly Driving / Working Time

Act I: The EU Regulations

The Overall Structure

Monday 0:00 a.m. Sunday 23:59 p.m.

Effective since April 2007

* Source: Kok et al. (2010)

/ School of Industrial Engineering - $\ensuremath{\mathbb{C}}$ prof. dr. Tom Van Woensel

Act I: The EU Regulations

-

	US	CAN	EU (basic)	EU (all)	AUS (std.)	AUS (BFM)
Duration of a long rest period	10	8	11	9	7	7
Driving time between two long rest periods	11	13	9	10	12	14
On-duty time between two long rest periods	14+	14+	12.25	14.25	12	14
Time elapsed between two long rest periods	14+	16+	13	15	17	17
Driving time within six days	60	70	56	56	72	72
On-duty time within six days	60 +	70+	60	60	72	72

-

Goel and Vidal, 2013

Act II: The challenges

Unrealistic transport plans violate EU regulations regarding driving and working time of drivers

/ School of Industrial Engineering - © prof. dr. Tom Van Woensel

Act II: The challenges Related literature

Source	Features of the studied problem	Solution Methodology	
Goel A. (2009)	VS&RP with TW considering 2 weeks	A large neighborhood search	
Goel A. (2010)	VS&RP with TW considering 1 week	A labeling algorithm	
Prescott-Gagnon et al. (2010)	VRP with TW considering 1 week	A large neighborhood search using B&C algorithm to construct new neighbors	
Kok et al. (2010)	VRP with TW considering all regulations	A restricted dynamic programming heuristic	
Derigs et al. (2010)	Multi-trip VRP with TW considering 2 weeks	Decomposition approaches	
Meyer (2011)	VSP with TW considering all regulations and distributed decision making	A restricted dynamic programming	
Goel and Vidal (2013) Vehicle Routing and Truck Driver Scheduling Problem		The Vidal nuclear bomb	

University of Technology

Act III: Mathematical formulation

- We have one....
- The model is verified with Gurobi for small instances

Act IV: Solution Methodology

- Master Problem: Set Partitioning, relaxed and solved by Column Generation.
- Pricing Sub-problem (labeling algorithm):
 - Elementary Shortest Path Problem with Resource Constraints (ESPPRC)
 - The additional resources:
 - Time (T)
 - Non-break time (T_{nb})
 - Non-rest time (T_{nr})

Based on: Dabia, S., Röpke, S., Van Woensel, T. & de Kok, A.G. (2013). Branch and price for the timedependent vehicle routing problem with time windows. Transportation Science, 47(3), 380-396

> Technische Universiteit Eindhoven University of Technology

Act IV: Solution Methodology Labeling algorithm

To improve its performance:

1. A bi-directional search was introduced where the labels are extended in both forward direction (from v_0 to its successors) and backward direction (from v_{n+1} to its predecessors).

2. 'New' dominance criteria were composed.

Act IV: Solution Methodology Weak Dominance Rules

Label L_f^2 is dominated by L_f^1 if: 1. $v(L_f^1) = v(L_f^2)$ 2. $c(L_f^1) \le c(L_f^2)$ 3. $q(L_f^1) \le q(L_f^2)$ 4. $S(L_f^1) \subseteq S(L_f^2)$ 5. $T(L_f^1) \le T(L_f^2)$ 6. $t_{nb}(L_f^1) \le t_{nb}(L_f^2)$ Extra Resources 7. $t_{nr}(L_f^1) \le t_{nr}(L_f^2)$

- $v(L_f)$ as the last node visited by L_f ,
- $c(L_f)$ as the reduced negative cost of the partial path traversed by L_f ,
- as the ready to service time at node $v(L_f)$ through the partial path traversed by $T(L_f)$ L_f ,
- $q(L_f)$ as the accumulated load (summation of demands up to node $v(L_f)$) through the partial path traversed by L_f ,
- $t_{nb}(L_f)$ as the accumulated interval driving time from last break up to node $v(L_f)$,
- as the accumulated daily driving time from last rest up to node $v(L_f)$, $t_{nr}(L_f)$
- / School of Industrial Engineering © prof. dr. To $S(L_f)$ Woensel
- as the set of nodes visited along the partial path of label L_f .

Act IV: Solution Methodology Improved Dominance Rules

- Label L_f^2 is dominated by L_f^1 if:
- 1. $v(L_f^1) = v(L_f^2)$
- 2. $c(L_{f}^{1}) \leq c(L_{f}^{2})$
- 3. $q(L_{f}^{1}) \leq q(L_{f}^{2})$
- 4. $S(L_f^1) \subseteq \widetilde{S}(L_f^2)$

Set of visited nodes along partial path represented by label 2 extended by nodes that are **unreachable** from this node

5. Either of these 4 cases happens:

(a)
$$t_{nb}(L_f^1) \leq t_{nb}(L_f^2)$$
 and $t_{nr}(L_f^1) \leq t_{nr}(L_f^2)$ and $T(L_f^1) \leq T(L_f^2)$
(b) $t_{nb}(L_f^1) \geq t_{nb}(L_f^2)$ and $t_{nr}(L_f^1) \leq t_{nr}(L_f^2)$ and $T(L_f^1) \leq T(L_f^2) - b$
(c) $t_{nb}(L_f^1) \leq t_{nb}(L_f^2)$ and $t_{nr}(L_f^1) \geq t_{nr}(L_f^2)$ and $T(L_f^1) \leq T(L_f^2) - r$
(d) $t_{nb}(L_f^1) \geq t_{nb}(L_f^2)$ and $t_{nr}(L_f^1) \leq t_{nr}(L_f^2)$ and $T(L_f^1) \leq T(L_f^2) - b - r$

/ School of Industrial Engineering - © prof. dr. Tom Van Woensel

Act IV: Solution Methodology Improved Dominance Rules (an illustration)

(c) $t_{nb}(L_f^1) \le t_{nb}(L_f^2)$ and $t_{nr}(L_f^1) \ge t_{nr}(L_f^2)$ and $Ta(L_f^1) \le T(L_f^2) - r$

/ School of Industrial Engineering - © prof. dr. Tom Van Woensel

Act IV: Solution Methodology The danger of using these dominance rules

d_{ii} = 2

(j)

 (\mathbf{j})

/ School of Industrial Engineering - © prof. dr. Tom Van Woensel

Technische Universiteit

University of Technology

Eindhoven

Act IV: Solution Methodology The danger of using these dominance rules

Act IV: Solution Methodology The danger of using these dominance rules

L2 was eliminated!!!

TU/e Technische Universiteit Eindhoven University of Technology

Act IV: Solution Methodology Non-Monotonic Behavior of t_{nb} and t_{nr} (forward extension)

Some solutions tested/being tested:

- Create more labels (nothing/rest/break)
- Create more nodes (rest/break nodes)

Act V: Computational results Solomon 15 customers

	Mono-		Bi-		
	Time	OFV	Time	OFV	
c101-15	0.686	14,208	0.094	14,208	
r101-15	0.219	35,560	0.124	35,560	
rc101-15	0.405	21,601	0.187	21,601	
c102-15	6.879	14,100	>1 hour	n/a	
r102-15	2.542	31,006	>1 hour	n/a	
rc102-15	13.728	19,215	>1 hour	n/a	
c106-15	0.717	14,208	0.187	14,208	

Act V: Computational results Computational Results

• Tested:

- 15- and 25-customer instances of standard Solomon C, R, and RC series for VRPTW
- Objective Function including the regulations:
 - Increased around 15% more compared to pure VRPTW
- Strong Dominance:
 - Reduced more labels compared to the weak dominance
 - Reduced run-time up to 29.80%

Epilogue: All's well but... What happens in practice?

- Usually no optimization (PTV, ORTEC)
- Planners:
 - Experience, experience, experience
 - After the route planning, some eyeballing (parking spaces)
 - Take into account more features
- Subcontract:
 - Not your problem anymore...
- World is much more interesting:
 - Uncertainty, stochasticity, time-dependency, exceptions => data
- Probably other "models" needed

Epilogue: *All's Well That Ends Well* Conclusions and future directions

- Break regulations is needed to be taken into account and are enforced by governments!
- A formal compact model of the break regulations in a VRPTW is provided.
- Exact solution technique is presented
- Future Research:
 - Speeding up the algorithm
 - Benchmarking with the heuristic based results in the literature
 - Complete legislation rules in the model

Thank you for your attention! Questions?

/ School of Industrial Engineering - © prof. dr. Tom Van Woensel