Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0

Distribution and Inventory Control of Cash for Recirculation ATMs An inventory-routing problem with pickup and deliveries

R. van Anholt, L. C. Coelho, Gilbert Laporte, I. Vis

June 2, 2014

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

CIRRELT

Coelho and Laporte Inventory-Routing with Pickup and Deliveries

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0

Outline

- Inventory-Routing
- 3 New pickup and delivery
- 4 Solution: Clustering + Optimization

CIRRELT

Coelho and Laporte Inventory-Routing with Pickup and Deliveries

Introduction ●000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Introduction					

What are recirculation ATMs?

- An ATM that can accept cash deposits as well as dispense cash!
- Deposited cash can be re-dispensed and so the cash is "recirculated"
- Recognizes the notes that are being deposited and identifies counterfeit notes
- Deposits are online and are immediately credited to the customer

글 🖌 🖌 글 🕨 🖌 🖉

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Introduction					

Facts about recirculation ATMs

- Japan and China are the world leaders in RATMs deployments
- Becoming more common in the Netherlands
- RATMs make sense in countries with high people-costs
- Less downtime for replenishment and lower cost of ownership than having separate dispense and deposit ATMs
 - Savings in power usage, space rental fees, cash management fees, cost of cash...

Introduction 00●0	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Introduction					

A graphical representation of the problem

- RATMs accept deposit and make the cash promptly available
- 32 cash centers around the Netherlands
- more than 6000 RATMS
- planning horizon of one week
- solid forecast for each day (withdrawns or deposits)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CIRRELT

Coelho and Laporte Inventory-Routing with Pickup and Deliveries

Introduction 00●0	Inventory-Routing	New pickup and delivery 00	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Introduction					

A graphical representation of the problem

Amsterdan area

< ロ > < 回 > < 三 > < 三 > < 三 = ・ の < ○

- 1 cash center
- 200 RATMs

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Introduction					

A real-world problem

What we want to solve

- Plan visits to RATMs to collect or deliver cash
- Make good vehicle routes and save on vehicle renting and overtime rates
- Satisfy all the demand while minimizing inventory costs

A new problem

Combination of inventory-routing with a new pickup and delivery

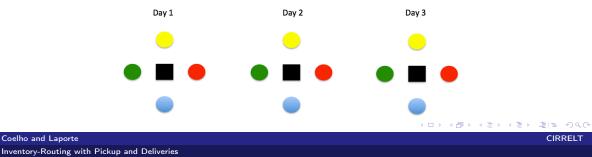
CIRRELT

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results	Conclusions
	•o				

Vendor-managed inventory (VMI)

The supplier makes all replenishment decisions Win-win situation

CIRRELT

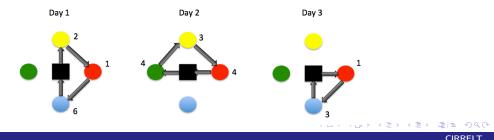

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results	Conclusions
	••				

Vendor-managed inventory (VMI)

The supplier makes all replenishment decisions Win-win situation

The supplier decides

- when to visit a customer
- how much to deliver to each customer
- how to combine them into vehicle routes


Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results	Conclusions
	00				

Vendor-managed inventory (VMI)

The supplier makes all replenishment decisions Win-win situation

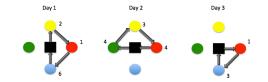
The supplier decides

- when to visit a customer
- how much to deliver to each customer
- how to combine them into vehicle routes

Coelho and Laporte

Introduction 0000	Inventory-Routing ●0	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0

Vendor-managed inventory (VMI)


The supplier makes all replenishment decisions Win-win situation

The supplier decides

- when to visit a customer
- how much to deliver to each customer
- how to combine them into vehicle routes

Inventory-routing problem (IRP)

Important to solve real VMI systems

CIRRELT

Coelho and Laporte

Introduction 0000	Inventory-Routing ○●	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0

In technical terms...

Inventory-routing problem

- Combined VRP and inventory management problems
- Very well studied separately, very hard to solve together
- Important to solve real-life Vendor-Managed Inventory (VMI) problems

Andersson, Hoff, Christiansen, Hasle, Løkketangen (2010) Coelho, Cordeau, Laporte (2014)

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results	Conclusions
		•0			

A new variation of the pickup and delivery problem

Existing pickup and delivery problems

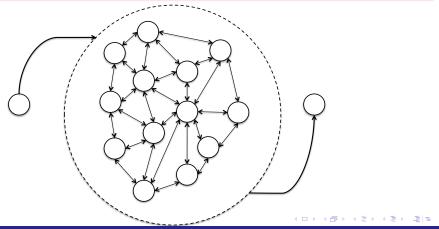
- 1-1: dial-a-ride
- M-M: bike sharing
- 1-M-1: beer distribution and bottle collection

Berbeglia, Cordeau, Gribkovskaia, Laporte (2007) Erdoğan, Battarra, Laporte, Vigo (2012) Hernández-Pérez and Salazar-González (2003) Hernández-Pérez and Salazar-González (2004)

A new pickup and delivery problem

One-to-many-to-many-to-one

CIRRELT


Coelho and Laporte

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results	Conclusions
		00			

A new variation of the pickup and delivery problem

A new pickup and delivery problem

```
One-to-many-to-many-to-one (1-M-M-1)
```


Coelho and Laporte

CIRRELT

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results	Conclusions
			000000000		
Application: ma	paging recirculation ATM				

Recirculation Automated Teller Machines

IRP with pickups and deliveries

- Commodities flow from and to the depot
- Commodities are exchanged among customers
- Scenario changes dynamically
- Heuristic clustering
- Powerful branch-and-cut algorithm

van Anholt, Coelho, Laporte, Vis (2013) CIRRELT-2013-71.

CIRRELT

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization ○●○○○○○○○○	Results 0000	Conclusions 0		
Application: managing recirculation ATMs							

CIRRELT

Solution procedure

Clustering phase

- Cluster ATMs around cash centers
- Set some ATMs as suppliers, receivers, neutral
- Some ATMs are set as "suppliers" only for neighboring ATMs
- These decisions change on a daily basis

Optimization phase

- This yields 32 separate problems
- Clustering phase generates lots of constraints
- Solve by branch-and-cut, several valid inequalities

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0	
Application: managing recirculation ATMs						

Full mathematical formulation (1/2)

minimize
$$\sum_{i \in \mathcal{V}'} \sum_{t \in \mathcal{T}} \alpha_i I_i^t + \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \beta \left(J_k^t + H_k^t \right) + \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \gamma_k y_0^{kt} + \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \delta E_k^t, \quad (1)$$

subject to the following constraints:

$$I_i^t = I_i^{t-1} + \sum_{k \in \mathcal{K}} q_i^{kt} - \sum_{k \in \mathcal{K}} p_i^{kt} + d_i^t \quad i \in \mathcal{V}' \quad t \in \mathcal{T}$$
(2)

$$0 \le I_i^t \le C_i \quad i \in \mathcal{V}' \quad t \in \mathcal{T}$$
(3)

$$\sum_{j \in \mathcal{V}, i < j} x_{ij}^{kt} + \sum_{j \in \mathcal{V}, j < i} x_{ji}^{kt} = 2y_i^{kt} \quad i \in \mathcal{V} \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(4)

$$\sum_{i \in \mathscr{S}} \sum_{j \in \mathscr{S}} x_{ij}^{kt} \leq \sum_{i \in \mathscr{S}} y_i^{kt} - y_m^{kt} \quad \mathscr{S} \subseteq \mathcal{V} \quad k \in \mathcal{K} \quad t \in \mathcal{T} \quad m \in \mathscr{S}$$
(5)

$$w_i^{kt} \le y_i^{kt} \quad i \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(6)

CIRRELT

Coelho and Laporte

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Application: mana	aging recirculation ATMs				

Full mathematical formulation (2/2)

$$z_i^{kt} \le y_i^{kt} \quad i \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(7)

$$q_i^{kt} \le w_i^{kt} \left(C_i - I_i^t \right) \quad i \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(8)

$$p_i^{kt} \le z_i^{kt} I_i^t \quad i \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(9)

$$w_i^{kt} + z_i^{kt} \le 1 \quad i \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
 (10)

$$s_k \sum_{(i,j)\in\mathcal{A}} c_{ij} x_{ij}^{kt} + r \sum_{i\in\mathcal{V}'} y_i^{kt} \le S + E_k^t \quad k\in\mathcal{K} \quad t\in\mathcal{T}$$
(11)

$$u_j^{kt} \ge \left(u_i^{kt} + p_j^{kt} - q_j^{kt}\right) x_{ij}^{kt} \quad i \in \mathcal{V} \quad j \in \mathcal{V} \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(12)

$$0 \le u_i^{kt} \le Q_k \quad i \in \mathcal{V} \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(13)

$$J_k^t = u_0^{kt} y_0^{kt} \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(14)

$$H_k^t = \sum_{i \in \mathcal{V}'} x_{i0}^{kt} u_i^{kt} \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(15)

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○

CIRRELT

Coelho and Laporte

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution : Clustering + Optimization 0000●000000	Results 0000	Conclusions 0	
Application: managing recirculation ATMs						

Key parts of the mathematical formulation

$$\begin{aligned} \text{minimize} \sum_{i \in \mathcal{V}'} \sum_{t \in \mathcal{T}} \alpha_i I_i^t + \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \beta \left(J_k^t + H_k^t \right) + \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \gamma_k y_0^{kt} + \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \delta E_k^t, \end{aligned} \tag{16} \\ 0 \leq I_i^t = I_i^{t-1} + \sum_{k \in \mathcal{K}} q_i^{kt} - \sum_{k \in \mathcal{K}} p_i^{kt} + d_i^t \leq C_i \end{aligned} \tag{17} \\ \sum_{j \in \mathcal{V}, i < j} x_{ij}^{kt} + \sum_{j \in \mathcal{V}, j < i} x_{ji}^{kt} = 2y_i^{kt} \quad i \in \mathcal{V} \quad k \in \mathcal{K} \quad t \in \mathcal{T} \end{aligned} \tag{18} \\ \sum_{i \in \mathscr{S}} \sum_{j \in \mathscr{S}} x_{ij}^{kt} \leq \sum_{i \in \mathscr{S}} y_i^{kt} - y_m^{kt} \quad \mathscr{S} \subseteq \mathcal{V} \quad k \in \mathcal{K} \quad t \in \mathcal{T} \quad m \in \mathscr{S} \end{aligned} \tag{19} \\ u_j^{kt} \geq \left(u_i^{kt} + p_j^{kt} - q_j^{kt} \right) x_{ij}^{kt} \quad i \in \mathcal{V} \quad j \in \mathcal{V} \quad k \in \mathcal{K} \quad t \in \mathcal{T} \end{aligned}$$

(21)

CIRRELT

<ロ> (四) (四) (日) (日) (日)

Lots of assignments, linking, and handling variables and constraints

Coelho and Laporte Inventory-Routing with Pickup and Deliveries

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0		
Application: managing recirculation ATMs							

Key parts of the mathematical formulation

minimize inventory costs + cash handling + vehicle renting + overtime(16)Inventory conservation and demand satisfaction(17)Vehicle routing(18)Pickup and delivery and load of the vehicle(19)Lots of assignments, linking, and handling variables and constraints(20)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CIRRELT

Introduction 0000	Inventory-Routing	New pickup and delivery 00	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Application: man	aging recirculation ATMs				

Key parts of the mathematical formulation

minimize inventory $costs + cash handling + vehicle renting + overtime$	(16)
Inventory conservation and demand satisfaction	(17)
Vehicle routing	(18)
Pickup and delivery and load of the vehicle	(19)
Lots of assignments, linking, and handling variables and constraints	(20)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CIRRELT

Algorithm

Solved by branch-and-cut after linearizing the model + valid inequalities

Coelho and Laporte

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Application: mana	aging recirculation ATMs				

Linearization and valid inequalities

$$q_i^{kt} \le w_i^{kt} C_i \quad i \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(21)

$$p_i^{kt} \le z_i^{kt} C_i \quad i \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}.$$
(22)

$$u_j^{kt} \ge u_i^{kt} + p_j^{kt} - q_j^{kt} - \left(1 - x_{ij}^{kt}\right) Q_k \quad i \in \mathcal{V} \quad j \in \mathcal{V} \quad k \in \mathcal{K} \quad t \in \mathcal{T}.$$
(23)

$$J_k^t = u_0^{kt} \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(24)

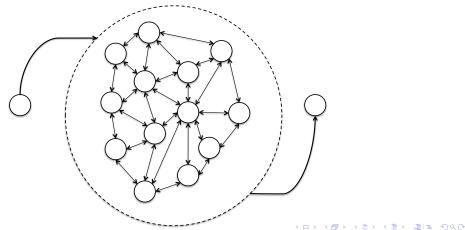
$$H_{k}^{t} \geq u_{i}^{kt} - \left(1 - x_{i0}^{kt}\right) Q_{k} \quad i \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$

$$H^{t} \leq Q_{i} \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$

$$(25)$$

$$H_k^{\iota} \le Q_k \quad k \in \mathcal{K} \quad t \in \mathcal{T}.$$
⁽²⁶⁾

$$x_{ij}^{kt} \le y_i^{kt} \quad i, j \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}$$
(27)


$$y_i^{kt} \le y_0^{kt} \quad i \in \mathcal{V}' \quad k \in \mathcal{K} \quad t \in \mathcal{T}.$$
⁽²⁸⁾

CIRRELT

Coelho and Laporte

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0		
Application: managing recirculation ATMs							

- Solve a large allocation problem to assign 6000 RATMs to 32 cash centers
- This yields a large IRP with P&D (1-M-M-1)

Coelho and Laporte

CIRRELT

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Application: managing recirculation ATMs					

Some RATMs can survive on their own

Example: if an RATM has its inventory between 40% and 60% of the capacity, it does not need a pickup nor a delivery

Coelho and Laporte

CIRRELT

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions 0
Application: man	aging recirculation ATMs				

Some RATMs have high inventory: suppliers

Example: if an RATM has its inventory above 70% of the capacity, it does not need a delivery and can only provide cash (pickup)

Coelho and Laporte

CIRRELT

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization 000000000●0	Results 0000	Conclusions 0
Application: managing recirculation ATMs					

Some RATMs have low inventory: receivers

Example: if an RATM has its inventory below 30% of the capacity, it cannot act as a supplier and can only receive cash (delivery)

Coelho and Laporte

CIRRELT

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization 000000000●	Results 0000	Conclusions 0	
Application: managing recirculation ATMs						
Clusterir	ng phase					

- - These decisions change on a daily basis
 - They significantly reduce the options of the algorithm, and simplify the solution procedure
 - By changing the parameters, we can evaluate flexible and restrictive scenarios, and compare their solutions

CIRRELT

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results ●000	Conclusions 0	
Computational experiments						

Results of computational experiments

- We first solved the full IRP P&D (1-M-M-1) for the 32 instances
- The average gap after 2h of running time was 51%
- We then tested a number of clustering parameters

Introduction	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0●00	Conclusions 0	
Computational experiments						

Results of computational experiments

- Limit the number of periods to visit an RATM in need (*m*)
- Limit the number of nearby RATMs that a supplying RATM can serve (f)
- Limit the minimum inventory for an RATM to be a "supplier" (b%)

Clustering case		Upper Bound	Upper Bound	Improvement over
Clustering	Case	(general)	(clustering)	the general case (%)
	<i>b</i> = 30	33094	31937	3.51
f = 1, m = 1	b = 50	33094	30802	6.94
	<i>b</i> = 70	33094	27829	15.79
	<i>b</i> = 30	33094	31949	3.47
f = 1, m = 2	b = 50	33094	31944	3.49
	<i>b</i> = 70	33094	30840	6.80
	<i>b</i> = 30	33094	31958	3.45
f = 2, m = 1	b = 50	33094	31934	3.51
	<i>b</i> = 70	33094	31562	4.63
	<i>b</i> = 30	33094	31952	3.46
f = 2, m = 2	b = 50	33094	31941	3.49
	<i>b</i> = 70	33094	31926	3 .54 ∂ → 4 ≥ →

Coelho and Laporte

≣া≡ ৩৭ে CIRRELT

< ∃ →

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 00●0	Conclusions 0
Computational e	xperiments				

Results of computational experiments

Testing clustering parameters

- All solutions with clustering are valid for the general problem!
- Disallowing visits to RATMs that can survive on their own

Average	Upper Bound	Upper Bound	Lower Bound	Gap
over 32 instances	(general)	(clustering)	(clustering)	(%)
	33094	25114	24859	0.09

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CIRRELT

Computational experiments	Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 000●	Conclusions 0
	Computational exp	eriments				

Results

- We have tested a number of parameter settings for the clustering phase
- Our clustering ideas yield better solutions (upper bounds) for all instances
- We learnt that the right setting in an early clustering phase can yield improvements of 30% on the average solution (over solving the problem with the full 200 RATMs and all possible flows)

van Anholt, Coelho, Laporte, Vis (2013) CIRRELT-2013-71.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ⊨ ● ○ ○ ○

Introduction 0000	Inventory-Routing	New pickup and delivery	Solution: Clustering + Optimization	Results 0000	Conclusions •

Short summary

Complex and rich transportation problems

- Integrate concepts of inventory availability
- Different new set of side constraints
- Applicable to the real world
- New variation of the pickup and delivery problem

Thanks for your attention!

gilbert.laporte@cirrelt.ca

Distribution and Inventory Control of Cash for Recirculation ATMs An inventory-routing problem with pickup and deliveries

R. van Anholt, L. C. Coelho, Gilbert Laporte, I. Vis

June 2, 2014

CIRRELT

Coelho and Laporte