Min-Max vs. Min-Sum Vehicle Routing: A Worst-Case Analysis

L. Bertazzi, B. Golden, and X. Wang Route 2014 Denmark June 2014

Introduction

- In the min-sum VRP, the objective is to minimize the total cost incurred over all the routes
- In the min-max VRP, the objective is to minimize the maximum cost incurred by any one of the routes
- Suppose we have computer code that solves the min-sum VRP, how poorly can it do on the min-max VRP?
- Suppose we have computer code that solves the min-max VRP, how poorly can it do on the min-sum VRP?

Introduction

Applications of the min-max objective

- Disaster relief efforts
 - Serve all victims as soon as possible

Computer networks

• Minimize maximum latency between a server and a client

>Workload balance

• Balance amount of work among drivers and/or across a time horizon

An Instance of the VRP

total cost $= 6 + 2\sqrt{5} \approx 10.47$ min-max cost $= 3 + \sqrt{5} \approx 5.24$

total cost $= 6 + 3\sqrt{2} \approx 10.24$ min-max cost $= 4 + 2\sqrt{2} \approx 6.83$

Motivation behind our Worst-Case Study

- Observation: The min-max solution has a slightly higher (2.2%) total cost, but it has a much smaller (23.3%) min-max cost
 - > Also, the routes are better balanced
- Is this always the case?
- What is the worst-case ratio of the cost of the longest route in the min-sum VRP to the cost of the longest route in the min-max VRP?
- What is the worst-case ratio of the total cost of the min-max VRP to the total cost of the min-sum VRP?

Variants of the VRP Studied

- Capacitated VRP with infinitely many vehicles (CVRP_INF)
- Capacitated VRP with a finite number of vehicles (CVRP_k)
- Multiple TSP (MTSP_k)
- Service time VRP with a finite number of vehicles (SVRP_k)

CVRP_INF

- Capacitated VRP with an infinite number of vehicles
 - > r_{MM}^{∞} : the cost of the longest route of the optimal min-max solution
 - > r_{MS}^{∞} : the cost of the longest route of the optimal min-sum solution
 - \succ Z_{MM}^{∞} : the total cost of the optimal min-max solution
 - \succ Z_{MS}^{∞} : the total cost of the optimal min-sum solution
 - The superscript denotes the variant

A Preview of Things to Come

- For each variant, we present worst-case bounds
- In addition, we show instances that demonstrate that the worst-case bounds are tight

CVRP_k

Capacitated VRP with at most k vehicles available

• $r_{MS}^{(k)} \leq z_{MS}^{(k)} \leq z_{MM}^{(k)} \leq k r_{MM}^{(k)}$ $\Rightarrow r_{MS}^{(k)} / r_{MM}^{(k)} \leq k$ • $z_{MM}^{(k)} \leq k r_{MM}^{(k)} \leq k r_{MS}^{(k)} \leq k z_{MS}^{(k)}$ $\Rightarrow z_{MM}^{(k)} / z_{MS}^{(k)} \leq k$

MTSP_k

Multiple TSP with k vehicles
The customers just have to be visited
Exactly k routes have to be defined

$$r_{MS}^{(M)} \le z_{MS}^{(M)} \le z_{MM}^{(M)} \le k r_{MM}^{(M)} \implies r_{MS}^{(M)} / r_{MM}^{(M)} \le k$$

$$z_{MM}^{(M)} \le k r_{MM}^{(M)} \le k r_{MS}^{(M)} \le k z_{MS}^{(M)} \implies z_{MM}^{(M)} / z_{MS}^{(M)} \le k$$

SVRP_k

- Service time VRP with at most k vehicles
 - Customer demands are given in terms of service times
 - Cost of a route = travel time + service time
- Routing of the min-sum solution is not affected by service times
- Routing of the min-max solution may be affected by service times

$$r_{MS}^{(S)} \le z_{MS}^{(S)} \le z_{MM}^{(S)} \le k r_{MM}^{(S)} \implies r_{MS}^{(S)} / r_{MM}^{(S)} \le k$$

SVRP_k

Min-max solution without service times

Min-max solution with service times

SVRP _k

• The bound $z_{MM}^{(S)} \le k r_{MM}^{(S)} \le k r_{MS}^{(S)} \le k z_{MS}^{(S)} \Longrightarrow z_{MM}^{(S)} / z_{MS}^{(S)} \le k$ is still valid, but no longer tight

• We prove the tight bound $z_{MM}^{(S)} \le k z_{MS}^{(S)} - (k-1)T$, where T = total service timein our paper

A Summary

	Ratio of the cost of the longest route	Ratio of the total cost
CVRP_INF	$r_{MS}^{\infty}/r_{MM}^{\infty} \rightarrow \infty$	$z_{MM}^{\infty}/z_{MS}^{\infty} \rightarrow \infty$
CVRP_k	$z_{MM}^{(k)} / z_{MS}^{(k)} \le k$	$z_{MM}^{(k)} / z_{MS}^{(k)} \le k$
MTSP_k	$\left r_{MS}^{(M)} / r_{MM}^{(M)} \le k \right $	$\frac{z_{MM}^{(M)}}{z_{MS}^{(M)}} \le k$
SVRP_k	$r_{MS}^{(S)}/r_{MM}^{(S)} \le k$	$z_{MM}^{(S)} \le k z_{MS}^{(S)} - (k-1)T$

Conclusions

- If your true objective is min-max, don't use the minsum solution
- If your true objective is min-sum, don't use the minmax solution