Min-Max vs. Min-Sum Vehicle Routing:
 A Worst-Case Analysis

L. Bertazzi, B. Golden, and X. Wang

Route 2014
Denmark
June 2014

Introduction

- In the min-sum VRP, the objective is to minimize the total cost incurred over all the routes
- In the min-max VRP, the objective is to minimize the maximum cost incurred by any one of the routes
- Suppose we have computer code that solves the min-sum VRP, how poorly can it do on the min-max VRP?
- Suppose we have computer code that solves the min-max VRP, how poorly can it do on the min-sum VRP?

Introduction

- Applications of the min-max objective
> Disaster relief efforts
- Serve all victims as soon as possible
$>$ Computer networks
- Minimize maximum latency between a server and a client
> Workload balance
- Balance amount of work among drivers and/or across a time horizon

An Instance of the VRP

The min-max solution

total cost
$\min -\max$ cost $=3+\sqrt{5} \approx 5.24$

The min-sum solution

$$
\begin{aligned}
& \text { total cost } \quad=6+3 \sqrt{2} \approx 10.24 \\
& \text { min-max cost }=4+2 \sqrt{2} \approx 6.83
\end{aligned}
$$

Motivation behind our Worst-Case

Study

- Observation: The min-max solution has a slightly higher (2.2\%) total cost, but it has a much smaller (23.3\%) min-max cost
$>$ Also, the routes are better balanced
- Is this always the case?
- What is the worst-case ratio of the cost of the longest route in the min-sum VRP to the cost of the longest route in the min-max VRP?
- What is the worst-case ratio of the total cost of the min-max VRP to the total cost of the min-sum VRP?

Variants of the VRP Studied

- Capacitated VRP with infinitely many vehicles (CVRP_INF)
- Capacitated VRP with a finite number of vehicles (CVRP_k)
- Multiple TSP (MTSP_k)
- Service time VRP with a finite number of vehicles (SVRP_k)

CVRP INF

- Capacitated VRP with an infinite number of vehicles
$>r_{M M}^{\infty}:$ the cost of the longest route of the optimal min-max solution
$>r_{M S}^{\infty}:$ the cost of the longest route of the optimal min-sum solution
$>Z_{M M}^{\infty}:$ the total cost of the optimal min-max solution
$>Z_{M S}^{\infty}:$ the total cost of the optimal min-sum solution
$>$ The superscript denotes the variant

A Preview of Things to Come

- For each variant, we present worst-case bounds
- In addition, we show instances that demonstrate that the worst-case bounds are tight

CVRP_INF
 $r_{M S}^{\infty} / r_{M M}^{\infty} \rightarrow \infty$
 (2):

CVRP_INF $z_{M M}^{\infty} / z_{M S}^{\infty} \rightarrow \infty$

 $z_{M M}^{\infty}=2(1+1 / \varepsilon)$
 $$
\begin{aligned} z_{M S}^{\infty} & =4+(n-2) \varepsilon \\ & =5-\varepsilon \end{aligned}
$$

CVRP

- Capacitated VRP with at most k vehicles available
- $r_{M S}^{(k)} \leq z_{M S}^{(k)} \leq z_{M M}^{(k)} \leq k r_{M M}^{(k)}$

$$
\Rightarrow r_{M S}^{(k)} / r_{M M}^{(k)} \leq k
$$

- $\quad z_{M M}^{(k)} \leq k r_{M M}^{(k)} \leq k r_{M S}^{(k)} \leq k z_{M S}^{(k)}$

$$
\Rightarrow z_{M M}^{(k)} / z_{M S}^{(k)} \leq k
$$

CVRP_k $r_{M s}^{(k)} / r_{M M}^{(k)} \leq k$

$r_{M M}^{(k)}=2+2 \varepsilon$

$r_{M S}^{(k)}=2 k+(k+1) \varepsilon$

CVRP_k $z_{M M}^{(k)} / z_{M S}^{(k)} \leq k$

$z_{M M}^{(k)}=2 k$

$z_{M S}^{(k)}=2+(k-1) \varepsilon$

MTSP

- Multiple TSP with k vehicles
> The customers just have to be visited
$>$ Exactly k routes have to be defined
- $r_{M S}^{(M)} \leq z_{M S}^{(M)} \leq z_{M M}^{(M)} \leq k r_{M M}^{(M)} \Rightarrow r_{M S}^{(M)} / r_{M M}^{(M)} \leq k$
- $\quad z_{M M}^{(M)} \leq k r_{M M}^{(M)} \leq k r_{M S}^{(M)} \leq k z_{M S}^{(M)} \Rightarrow z_{M M}^{(M)} / z_{M S}^{(M)} \leq k$

MTSP_k $\quad r_{M S}^{(M)} / r_{M M}^{(M)} \leq k$

MTSP_k $z_{M M}^{(M)} / z_{M S}^{(M)} \leq k$

$z_{M S}^{(M)}=2+2(k-1) \varepsilon+(k-1) \varepsilon$
$=2+3 \varepsilon(k-1)$

SVRP

- Service time VRP with at most k vehicles
> Customer demands are given in terms of service times
$>$ Cost of a route $=$ travel time + service time
- Routing of the min-sum solution is not affected by service times
- Routing of the min-max solution may be affected by service times
- $r_{M S}^{(S)} \leq z_{M S}^{(S)} \leq z_{M M}^{(S)} \leq k r_{M M}^{(S)} \Rightarrow r_{M S}^{(S)} / r_{M M}^{(S)} \leq k$

SVRP k

Min-max solution without service times

Min-max solution with service times

SVRP_k $r_{M S}^{(s)} / r_{M M}^{(S)} \leq k$

$$
r_{M M}^{(S)}=2+2 t+2 \varepsilon \quad r_{M S}^{(S)}=2 k+2 k t+(k+1) \varepsilon
$$

SVRP

- The bound $z_{M M}^{(S)} \leq k r_{M M}^{(S)} \leq k r_{M S}^{(S)} \leq k z_{M S}^{(S)} \Rightarrow z_{M M}^{(S)} / z_{M S}^{(S)} \leq k$ is still valid, but no longer tight
- We prove the tight bound

$$
z_{M M}^{(S)} \leq k z_{M S}^{(S)}-(k-1) T \text {, where } T=\text { total service time }
$$ in our paper

SVRP_k $z_{M M}^{(S)} \leq k z_{M S}^{(S)}-(k-1) T$

$z_{M M}^{(S)}=2 k+T$

$z_{M S}^{(S)}=2+\varepsilon(k-1)+T$

A Summary

	Ratio of the cost of the longest route	Ratio of the total cost
CVRP_INF	$r_{M S}^{\infty} / r_{M M}^{\infty} \rightarrow \infty$	$z_{M M}^{\infty} / z_{M S}^{\infty} \rightarrow \infty$
CVRP_k	$z_{M M}^{(k)} / z_{M S}^{(k)} \leq k$	$z_{M M}^{(k)} / z_{M S}^{(k)} \leq k$
MTSP_k	$r_{M S}^{(M)} / r_{M M}^{(M)} \leq k$	$z_{M M}^{(M)} / z_{M S}^{(M)} \leq k$
SVRP_k	$r_{M S}^{(S)} / r_{M M}^{(S)} \leq k$	$z_{M M}^{(S)} \leq k z_{M S}^{(S)}-(k-1) T$

Conclusions

- If your true objective is min-max, don't use the minsum solution
- If your true objective is min-sum, don't use the minmax solution

