New Benchmark Instances for the Capacitated Vehicle Routing Problem

Eduardo Uchoa - UFF
Diego Pecin - PUC-Rio
Artur Pessoa - UFF
Marcus Poggi - PUC-Rio
Anand Subramanian - UFPB
Thibaut Vidal - MIT, PUC-Rio

Vehicle Routing

One of the most widely studied families of problems in Combinatorial Optimization:

■ Direct applications in the real world systems that distribute goods and services, vital to the modern economies.

Reflecting the variety of aspects present in those systems, the VRP literature is spread into dozens of variants.

Vehicle Routing Variants

For examples, there are variants that consider:

- Time windows,
- Multiple depots,

■ Mixed vehicle fleet,
■ Split delivery, pickup and delivery,

- Loading constraints, etc.
"Rich" variants try to consider as many of those aspects as possible

Capacitated Vehicle Routing

Problem (CVRP)

VRP "poorest" variant:

- single depot
- homogeneous fleet,
- only deliveries (or only pickups)

■ customer demands measured by a onedimensional number (weight, volume, number of pax, etc)

Only route restriction: the sum of the demands must not exceed the vehicles capacity Q.

Capacitated Vehicle Routing

 Problem (CVRP)In the VRP landscape, CVRP occupies a central position:

- By historical reasons, it was defined in 1959 by Dantzig (one of our Founding Fathers) and Ramser
- By practical reasons, there is a significant number of real world systems that can be satisfactorily modeled as a CVRP

Capacitated Vehicle Routing Problem (CVRP)

CVRP is a natural testbed for new ideas:
\square Its simplicity allows cleaner descriptions and implementations, without the additional conceptual burden of more complex variants

Capacitated Vehicle Routing Problem (CVRP)

CVRP is a natural testbed for new ideas:

- Several good ideas were first proposed for the CVRP and then successfully generalized for many other variants

Example: Clarke and Wright heuristic (1964)

Our Claim

Recent advances in both exact and heuristic methods made existing CVRP benchmark instances obsolete or limited

Our Contribution

A new set of 100 benchmark instances, ranging from 100 to 1000 customers:

- We tried to make this set as diversified as possible, covering a wide range of characteristics found in real applications.

Existing benchmark instances

Since 1995, the exact methods have been tested mostly in benchmarks from series A, B, E, F, M and P.

Series A (Augerat, 1995)

- 27 instances with n (number of customers) from 30 to $79, Q=100$, demands from the $U[1,30], 10 \%$ of them are multiplied by 3
- Random depot and customer positioning in the grid $[1,100] \times[1,100]$, euclidean distances
Very easy for modern algorithms:
- Average solution time (BCP-PPPU14): 4.5 s
- Good heuristics find all optima

Series B (Augerat, 1995)

- 23 instances, n from 30 to $77, Q=100$, demands from $\mathrm{U}[1,30], 10 \%$ of them are multiplied by 3 , random depot, clustered customers

Very easy for modern algorithms:

- Average solution time (BCP-PPPU14): 5.9s
- Good heuristics find all optima

Series P (Augerat, 1995)

- 24 instances adapted from previous instances by other authors, n from 15 to 100, Q from 35 to 3000.

Easy for modern algorithms:

- Average solution time (BCP-PPPU14): 32.7s
- The best heuristics find all optima

Series E (Christofides and Eilon,

 1969, some modified by Gillet and Miller, 1974)The most classical benchmark set

- 13 instances with n between 12 and 100

Easy for modern algorithms:

- Average solution time (BCP-PPPU14): 29.2s
- The best heuristics find all optima

Series F (Fisher, 1994)

- Only 3 instances (F-n45-k4, F-n75-k4, F-n135-k7).
- Large Q, small demands -> very long routes -> BC performs better than BCP!

Easy for (some) modern algorithms:

- Avg. time BC-LLE04: 53.1s (modern machine)
- Avg. Time BCP-PPPU14: 3679s
- Good heuristics find all optima

Series M (Christofides, Mingozzi and Toth, 1979)

- 5 instances with n between 100 and 199.
- Instances M-n151-k12, M-n200-k16 and M-n200-k17 remained very challenging until recently
- M-n151-k12 was solved in 2012 by Contardo and by Ropke
- The last two instances were solved last year (PPPU14)
- M-n200-k16 is very hard for heuristics

M-n200-k16 ($\mathrm{n}=199$,
$\mathrm{Q}=200$)

Optimal: 1274

Existing benchmark instances

The heuristic methods have been tested mostly in other benchmarks.

CMT instances

Very classical, they are the same 5 instances in series M plus 2 instances from series E

- However, the distances are not rounded
- As happens in other benchmark sets used by the heuristic community, it also contains 7 instances with distance/duration constraints (DCVRP)

CMT instances

Until recently, no one took the trouble of running a modern exact method on them!

■Avg. solution time (BCP-PPPU14): 2816s
-6 solutions, now known to be optimal, were already found in Taillard (1995). Modern heuristics find them easily

- Instance CMT5 (akin to M-n200) is very hard to heuristics. Only Mester and Bräysy (2007) had already published the optimal value of 1291.29

Golden, Wasil, Kelly and Chao Instances (1998)

From 240 to 483 customers, appear frequently in recent literature

- 12 instances:
- Concentric squares, depot in the corner
- Concentric squares, depot in the center
- Concentric 6 pointed stars, depot in the center

There are also 8 DCVRP instances:

- concentric circles, depot in the center

Golden_13
($\mathrm{n}=255$,
$\mathrm{Q}=1000$)

Golden, Wasil, Kelly and Chao Instances (1998)

Hard for most heuristics in the literature
-However, Nagata and Bräysy (2009) found 11 BKS, and Vidal et at. (2012) found all 12 BKS.

■Recently, PPPU14 proved that 4 of those BKS are optimal

- The difficulty of solving those instances comes from their high degree of symmetry

Golden_14 ($\mathrm{n}=320$, $\mathrm{Q}=1000$)

Optimal: 1080.55

Golden_19
($\mathrm{n}=360$,
$\mathrm{Q}=200$)

Optimal:
1365.60

Taillard Instances (1993)

A little less popular

- 4 instances for each n in $\{75,100,150\}$. All were already solved to optimality

There is also a single real world instance with $n=385$, it remains open

Existing benchmark instances

In our view, the current CVRP benchmarks are nearly exhausted

- For example, there is essencially a single instance (already solved) in the wide interval from 151 to 239 customers

Newly Proposed Instances

- Depot and customers are positioned in a grid [0,1000]x[0,1000]
- 50 instances between 100 and 330 customers
- 50 instances between 335 and 1000 customers

Depot Positioning

There are 3 possibilities:
■Central - $(500,500)$
-Eccentric - corner (0,0)
-Random

Customer Positioning

3 possibilities:

- Random
- Clustered
- Random-Clustered
(half-random, half-clustered)

Clustering Method

- The number of seeds (S) is taken from $U(3,8)$

The seeds "attract" customers with an exponential decay
- The probability that a position p in the grid receives a customer is proportional to:

$$
\sum_{s=1}^{S} e^{-\operatorname{dist}(p, s) / 40}
$$

Demand Distribution

7 possibilities:

- Unitary
- Small demands, large variance: $\mathrm{U}[1,10]$
- Small demands, small variance: $U[5,10]$
- Large demands, large variance: $\mathrm{U}[1,100]$

Large demands, small variance: $\mathrm{U}[50,100]$

Demand Distribution

Depending on position:

- U[1,50] if customer is in an odd quadrant (with respect to $(500,500)$),
- U[51,100] otherwise

Many small ($\mathrm{U}[1,10]$) and a few large ($\mathrm{U}(50,100)$)

Average Route Size (n/K)

One of the most important characteristics of an instance.
$K=\left\lceil\sum_{i=1}^{n} d_{i} / Q\right\rceil$ is a LB (almost always tight) on the minimum possible number of routes

- The desired value of n / K is taken from a triangular distribution $\mathrm{T}(3,10,25)$
- A capacity Q that better approximates this value is chosen

Newly Proposed Instances

Of course, it is not possible to generate the "Cartesian product" of all those characteristics

- Instead, the generated 100 instances correspond to a sampling

New Instances 1-20

\#	Name	Short	n	Dep	Cust	S	Dem	Q	n/K
1	X-n101-k25	X101	100	R	RC	7	1-100	206	4,0
2	X-n106-k14	X106	105	E	C	3	50-100	600	7,5
3	X-n110-k13	X110	109	C	R	-	5-10	66	8,4
4	X-n115-k10	X115	114	C	R	-	SL	169	11,4
5	X-n120-k6	X120	119	E	RC	8	U	21	19,8
6	X-n125-k30	X125	124	R	C	5	Q	188	4,1
7	X-n129-k18	X129	128	E	RC	8	1-10	39	7,1
8	X-n134-k13	X134	133	R	C	4	Q	643	10,2
9	X-n139-k10	X139	138	C	R	-	5-10	106	13,8
10	X-n143-k7	X143	142	E	R	-	1-100	1190	20,3
11	X-n148-k46	X148	147	R	RC	7	1-10	18	3,2
12	X-n153-k22	X153	152	C	C	3	SL	144	6,9
13	X-n157-k13	X157	156	R	C	3	U	12	12,0
14	X-n162-k11	X162	161	C	RC	8	50-100	1174	14,6
15	X-n167-k10	X167	166	E	R	-	5-10	133	16,6
16	X-n172-k51	X172	171	C	RC	5	Q	161	3,4
17	X-n176-k26	X176	175	E	R	-	SL	142	6,7
18	X-n181-k23	X181	180	R	C	6	U	8	7,8
19	X-n186-k15	X186	185	R	R	-	50-100	974	12,3
20	X-n190-k8	X190	189	E	C	3	1-10	138	23,6

New Instances 21-40

\#	Name	Short	n	Dep	Cust	S	Dem	Q	n/K
21	X-n195-k51	X195	194	C	RC	5	1-100	181	3,8
22	X-n200-k36	X200	199	R	C	8	Q	402	5,5
23	X-n204-k19	X204	203	C	RC	6	50-100	836	10,7
24	X-n209-k16	X209	208	E	R	-	5-10	101	13,0
25	X-n214-k11	X214	213	C	C	4	1-100	944	19,4
26	X-n219-k73	X219	218	E	R	-	U	3	3,0
27	X-n223-k34	X223	222	R	RC	5	1-10	37	6,5
28	X-n228-k23	X228	227	R	C	8	SL	154	9,9
29	X-n233-k16	X233	232	C	RC	7	Q	631	14,5
30	X-n237-k14	X237	236	E	R	-	U	18	16,9
31	X-n242-k48	X242	241	E	R	-	1-10	28	5,0
32	X-n247-k47	X247	246	C	C	4	SL	134	5,2
33	X-n251-k28	X251	250	R	RC	3	5-10	69	8,9
34	X-n256-k16	X256	255	C	C	8	50-100	1225	15,9
35	X-n261-k13	X261	260	E	R	-	1-100	1081	20,0
36	X-n266-k58	X266	265	R	RC	6	5-10	35	4,6
37	X-n270-k35	X270	269	C	RC	5	50-100	585	7,7
38	X-n275-k28	X275	274	R	C	3	U	10	9,8
39	X-n280-k17	X280	279	E	R	-	SL	192	16,4
40	X-n284-k15	X284	283	R	C	8	1-10	109	18,9

New Instances 81-100

\#	Name	Short	n	Dep	Cust	S	Dem	Q	n/K
81	X-n655-k131	X655	654	C	C	4	U	5	5,0
82	X-n670-k126	X670	669	R	R	-	SL	129	5,3
83	X-n685-k75	X685	684	C	RC	6	Q	408	9,1
84	X-n701-k44	X701	700	E	RC	7	1-10	87	15,9
85	X-n716-k35	X716	715	R	C	3	1-100	1007	20,4
86	X-n733-k159	X733	732	C	R	-	1-10	25	4,6
87	X-n749-k98	X749	748	R	C	8	1-100	396	7,6
88	X-n766-k71	X766	765	E	RC	7	SL	166	10,8
89	X-n783-k48	X783	782	R	R	-	Q	832	16,3
90	X-n801-k40	X801	800	E	R	-	U	20	20,0
91	X-n819-k171	X819	818	C	C	6	50-100	358	4,8
92	X-n837-k142	X837	836	R	RC	7	5-10	44	5,9
93	X-n856-k95	X856	855	C	RC	3	U	9	9,0
94	X-n876-k59	X876	875	E	C	5	1-100	764	14,8
95	X-n895-k37	X895	894	R	R	-	50-100	1816	24,2
96	X-n916-k207	X916	915	E	RC	6	5-10	33	4,4
97	X-n936-k151	X936	935	C	R	-	SL	138	6,2
98	X-n957-k87	X957	956	R	RC	4	U	11	11,0
99	X-n979-k58	X979	978	E	C	6	Q	998	16,9
100	X-n1001-k43	X1001	1000	R	R	-	1-10	131	23,3

X-n219-k73 or X219

n: 218
depot positioning:
eccentric
customer positioning: random
demands: unitary
Q: 3
K: 73
n/K: 2,98

X-n256-k16 or X256

X-n327-k20 or X327

X-n401-k29 or X401

n: 400
depot positioning:
eccentric
customer positioning:
clustered
(6 seeds)
demands: Q [1-50]
odd quadrant,
[51-100] even
quadrant
Q: 745
K: 29
$\mathrm{n} / \mathrm{K}: 13.8$

X-n766-k71 or X766

n: 765
depot positioning:
eccentric
customer positioning:
random-clustered
(7 seeds)
demands: SL 105
customers [1-50], 660
customers [1-10]
Q: 166
K: 71
$\mathrm{n} / \mathrm{K}: 10.8$

Two Decisions

To Round Or Not To Round?

Nearly all existing instances are euclidean, depot and customer coordinates are given:

- Following the TSPLIB convention, in the literature on exact methods the distances are rounded to the nearest integer.
- In the literature on heuristics, distances are seldom rounded.

Advantages of Rounding

Most Mathematical Programming based algorithms (including standard MIP solvers) have a limited optimality precision:

- CPLEX default: only 10^{-4} (0.01%)!
- Can be increased to 10^{-6} or even 10^{-7}
- More precision may require special software (more bits in the floating-point numbers or even exact rational arithmetic).

Advantages of Rounding

Distance rounding usually makes the optimal values found by standard MP methods reliable

- The practice of not rounding, but only reporting two decimal places does not solve the problem:
- 853.2350001 -> 853.24
- 853.2349999 -> 853.23

Advantages of Rounding?

Rounding allows exact methods "to cheat" a bit!
-If an UB of 1000 is known, a B\&B node with LB 999.01 can be fathomed
\square Most existing instances have optima around 10^{3}-> enough to make some algorithms to be more than twice as fast

Disadvantages of Rounding

Rounded instances are more likely to have alternative optimal solutions, therefore:

- A benchmark of rounded instances has less power for comparing competing algorithms (specially heuristics), since there are more ties
- This effect is significant on instances with optima around 10^{3}

Decision: To Round

The new instances were created to have optima around 10^{5} :
-Large enough to avoid significant "B\&B cheating" and many alternative optimal solutions
-Small enough to avoid precision problems

To Fix Or Not To Fix?

- In the literature on exact methods, the number of routes is fixed to a value K (almost always to the minimum possible).
- In the literature on heuristics, the number of routes is not fixed.

Why fixing the number of routes?

Standard explanation:

- K is the size of the fleet

In our opinion, this is pretty unrealistic
More sophisticated explanation:

- Fixing K to the minimum possible is a way of taking the fixed cost of using a vehicle into account

Decision: Not To Fix

Decisive argument:

- If CVRP allows solutions with very short and very long routes, why not assigning the two shortest routes to the same vehicle?

Routes do not need to correspond to vehicles.
In some real cases, the same vehicle performs all routes (a 100\% homogeneous fleet!)

Decision: Not To Fix

Moreover:

- The original CVRP definition in Dantzig and Ranser does not fix the number of routes

Experiments with the new

instances

We performed tests with 2 state-of-the-art algorithms:

- The Branch-Cut-and-Price (BCP) in PPPU14 (that will be presented tomorrow)
- The Unifyied Hybrid Genetic Search (UHGS) by Vidal, Crainic, Gendreau and Prins (2014)

Experiments with the new

instances

We performed tests with 2 state-of-the-art algorithms:

- The Branch-Cut-and-Price (BCP) in PPPU14 (that will be presented tomorrow)
- The Unifyied Hybrid Genetic Search (UHGS) by Vidal, Crainic, Gendreau and Prins (2014)

BCP

38 instances could be solved to optimality
$-100 \leq n<200$: 21 out of 22
$-200 \leq n<300$: 13 out of 21
$-300 \leq n<500$: 3 out of 25
$-500 \leq n \leq 1000: 1$ out of 32

- Smallest unsolved: X-n190-k8 (projected cpu time: a few months)
- Largest solved: X-n655-k131 (2491s)

What makes an instance X harder to BCP?

Besides the obvious value of n :

- Large n / K : a very significant effect
- The absolute value of Q : significant effect

Surprisingly, depot and customer positioning does not have a clear influence

UHGS

UHGS was run 50 times in each instance:
-It found 34 out of the 38 proven optima. The 4 instances where the optimal was not found have $n / K \leq 5$.

- Small n/K good for BCP, bad for UHGS

What else makes an instance X

harder to UHGS?

By measuring the average gap between the solution found in each run and the BKS/optimal, it is possible to assess the effect of instance characteristics

Effect of demand type on UHGS

Box-plots indicate significant influence of some demand types

Effect of depot position on UHGS

Box-plots do not indicate significant influence

Web site

The X instances are available at:

http://vrp.atd-lab.inf.puc-rio.br/

- The site also provides detailed information on all other CVRP instances, including plots, optimal/best known solutions.

Soon, the users will be able to submit improving solutions automatically

Conclusions

We are open to feedback from the community

We hope that "heuristic people" and "exact people" start working on the same instances!

Tak!

