A Lower Bound for the Quickest Path Problem

Gianpaolo Ghiani¹ Emanuela Guerriero¹

¹Department of Engineering for Innovation University of Salento (Italy)

Route 2014

ヘロト 人間 ト ヘヨト ヘヨト

э

Motivation

- The Quickest Path Problem
- 2 Our Contribution
- The Quickest Path Problem
- A lower bound
- 6 Computational Results

→ Ξ → < Ξ →</p>

æ

< 🗇 🕨

The Quickest Path Problem

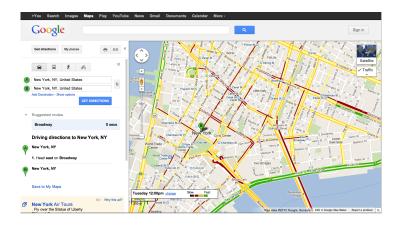
The Quickest Path Problem

The determination of shortest or quickest paths on road networks is the basic ingredient of driving direction computation as well as of logistic planning and traffic simulation.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The Quickest Path Problem

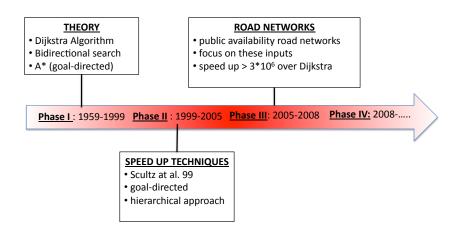
Typical application setting



三 の へ

イロト イポト イヨト イヨト

The Quickest Path Problem



In-depth reviews: Delling et al (2009) and Sommer (2012)

Gianpaolo Ghiani, Emanuela Guerriero A Lower Bound for the Quickest Path Problem

The Quickest Path Problem

Our Contribution

We can define $\underline{z}(i, d)$: a lower bound on the minimum travel time from node *i* to target *d*. This bound can be used in A^* algorithm a best first search

$$h(i,d) = t_{si} + \underline{z}(i,d)$$

The Dijkstra's algorithm can be seen as an A* procedure with a null lower bound.

くロト (過) (目) (日)

The Quickest Path Problem

Our Contribution

We can define $\underline{z}(i, d)$: a lower bound on the minimum travel time from node *i* to target *d*. This bound can be used in A^* algorithm a best first search

$$h(i,d) = t_{si} + \underline{z}(i,d)$$

In this research work we focus on a new lower bound $\underline{z}(i, d)$ for the Quickest Path Problem (QPP).

くロト (過) (目) (日)

The Quickest Path Problem

In a nutshell...



Gianpaolo Ghiani, Emanuela Guerriero A Lower Bound for the Quickest Path Problem

ъ

ъ

The Quickest Path Problem

In a nutshell...

ъ

э

The Quickest Path Problem

In a nutshell...

We propose a new lower bound that takes into account moderate speed areas

Gianpaolo Ghiani, Emanuela Guerriero

A Lower Bound for the Quickest Path Problem

- The proposed new lower bound is 3.88 times faster and more effective then the trivial lower bound
- We embedded the new lower bounding procedure into a unidirectional A*
- We test the resulting algorithm on some metropolitan areas

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The Quickest Path Problem

- Given a directed graph G(V,A). With each arch (*i*, *j*) ∈ A are associated
 - a non negative constant travel time t_{ij}
 - a positive length I_{ij} and a speed $\nu_{ij} = I_{ij}/t_{ij}$
 - a curve Γ_{ij} (i.e. the geometry associated to the road)
- given a source node $s \in V$ and a destination node $d \in V$
- The traversal time z_p of a path $p = (s = i_1, i_2, \dots, i_k = d))$ is $\sum_{h=1}^{k} t_{i_h i_{h+1}}$

We aim to determine a path *p* such that z_p is minimum. Let z^* be such minimum duration.

イロト イポト イヨト イヨト

Problem Relaxation

ъ

э

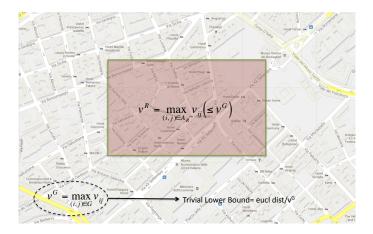
Problem Relaxation

Gianpaolo Ghiani, Emanuela Guerriero A Lower Bound for the Quickest Path Problem

ъ

э

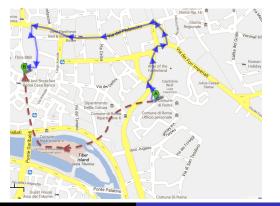
Problem Relaxation



ъ

Problem Relaxation

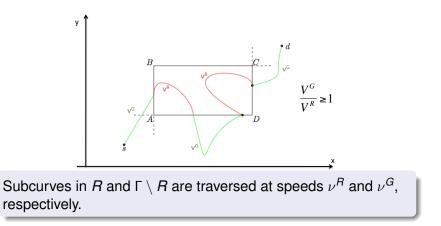
Given two nodes $i, j \in V$ the path can be any curve in the plane.



Gianpaolo Ghiani, Emanuela Guerriero

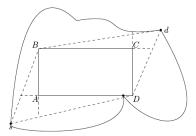
A Lower Bound for the Quickest Path Problem

The proposed Lower Bound

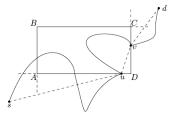


The proposed Lower Bound

<u>Theorem.</u> A least duration curve from *s* to *d* in the plane is a polyline s - u - v - d, where $u \in \overline{AB} \cup \overline{AD}$ and $v \in \overline{BC} \cup \overline{CD}$.



The proposed Lower Bound



u is the last intersection point with AB ∪ AD saw from s
 v is the first intersection point with BC ∪ CD saw from d.

The least duration curves: four types

$$T(u, v) = \frac{dist(s, u)}{\nu^{G}} + \frac{dist(u, v)}{\nu^{R}} + \frac{dist(v, d)}{\nu^{G}}$$

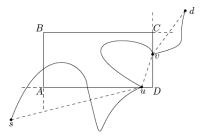
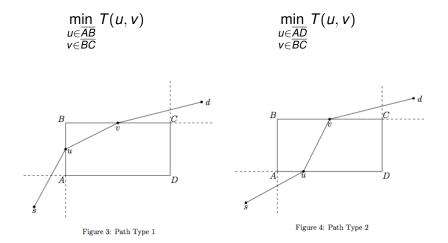


Figure 2: Second Case

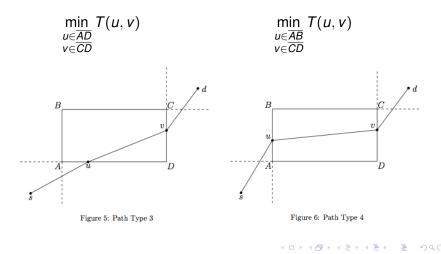
코 에 제 코 어

э

The least duration curves: four types



The least duration curves: four types



The Lower Bound

A lower bound <u>z</u> can be computed by solving the following four optimization problems:

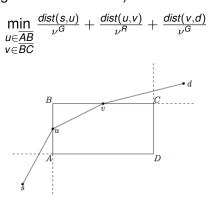
$$\min_{\substack{u \in \overline{AB} \\ v \in \overline{BC}}} T(u, v) \qquad \qquad \min_{\substack{u \in \overline{AD} \\ v \in \overline{BC}}} T(u, v) \qquad \qquad \min_{\substack{u \in \overline{AD} \\ v \in \overline{CD}}} T(u, v) \qquad \qquad \min_{\substack{u \in \overline{AB} \\ v \in \overline{CD}}} T(u, v)$$

and then taking the minimum.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Type 1 Path

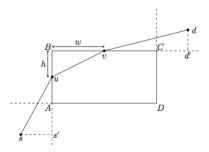
Two-variable non-linear box-constrained optimization problems (time consuming iterative methods)



ママ・ドレー マン・

3

Type 1 Path: a relaxation



$$\underline{z}^{1} = \min_{\substack{0 \le w \le W \\ 0 \le h \le H}} \frac{y_{B} - y_{s} - h}{\nu^{G}} + \frac{\sqrt{h^{2} + w^{2}}}{\nu^{R}} + \frac{x_{d} - x_{B} - w}{\nu^{G}}$$

코 에 제 코 어

A D > A P >

æ

Type 1 Path: a relaxation

 $\alpha = \frac{\nu_{\rm G}}{\nu_{\rm R}} > 1$

Algorithm 1 Computing an optimal solution (w^*, h^*) for the Path 1 subproblem

$$\label{eq:constraints} \begin{array}{l} \mbox{if } (\alpha \geq \sqrt{2}) \mbox{ then } \\ w^* = 0; \\ h^* = 0; \\ \mbox{else} \\ w^* = \min(\frac{H}{\sqrt{\alpha^2 - 1}}, W); \\ h^* = H; \\ \mbox{end if } \end{array}$$

$$\underline{z}^{1} = \min_{\substack{0 \le w \le W \\ 0 \le h \le H}} \frac{y_{B} - y_{s} - h}{\nu^{G}} + \frac{\sqrt{h^{2} + w^{2}}}{\nu^{R}} + \frac{x_{d} - x_{B} - w}{\nu^{G}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\alpha = \frac{\nu_{\rm G}}{\nu_{\rm R}} > 1$$

Algorithm 1 Computing an optimal solution (w^*, h^*) for the Path 1 subproblem

 $\label{eq:constraints} \begin{array}{l} \mbox{if } (\alpha \geq \sqrt{2}) \mbox{ then } \\ w^* = 0; \\ h^* = 0; \\ \mbox{else } \\ w^* = \min(\frac{H}{\sqrt{\alpha^2 - 1}}, W); \\ h^* = H; \\ \mbox{end if } \end{array}$

Theorem

The solution provided by Algorithm 1 is optimal for the Type 1 path subproblem.

ヘロア ヘビア ヘビア・

ъ

Theorem

The solution provided by Algorithm 1 is optimal for the Type 1 path subproblem.

Proof Sketch

We prove that w^* and h^* satisfy the KKT conditions for the Type 1 path optimization subproblem

ヘロト ヘアト ヘビト ヘビト

э

Implementation Issue

Type 1 Path is suitable for a preprocessing phase

$$\overline{z}^{1} = \overline{z}_{a}^{1} + \left(\frac{y_{s} + x_{d}}{\nu^{G}}\right); \qquad (1)$$

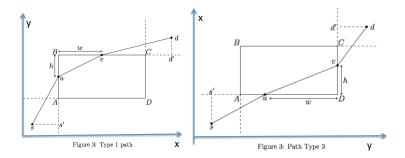
・ロット (雪) () () () ()

$$\overline{z}_{a}^{1} = \left(\frac{y_{B} - h_{1}^{*}}{\nu^{G}} + \frac{\sqrt{(h_{1}^{*})^{2} + (w_{1}^{*})^{2}}}{\nu^{R}} + \frac{-x_{B} - w_{1}^{*}}{\nu^{G}}\right); \quad (2)$$

where \overline{z}_a^1 does not depend on s and d

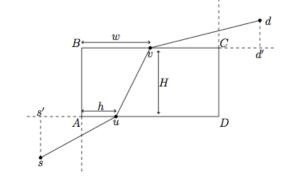
Type 1 Path - Type 3 Path

A Type 3 problem is equivalent to a Type 1 problem where x_i and y_i are swapped for $i \in \{s, d, A, B, C, D\}$.



< ∃⇒

Type 2 Path: a relaxation



$$\underline{Z}^{2} = \min_{\substack{0 \le w \le W \\ 0 \le h \le W}} \frac{x_{A} - x_{s} + h}{\nu^{G}} + \frac{\sqrt{H^{2} + (w - h)^{2}}}{\nu^{R}} + \frac{x_{d} - x_{B} - w}{\nu^{G}}$$
(3)

코 에 제 코 어

ъ

$$\alpha = \frac{\nu_G}{\nu_R} > 1$$

Algorithm 2 Computing an optimal solution (w^*, h^*) for the Path 2 subproblem

$$\begin{array}{l} h^{*}=0;\\ w^{*}=\frac{H}{\sqrt{\alpha^{2}-1}};\\ \text{if }(w^{*}>W)\text{ then }\\ w^{*}=W\\ \text{end if} \end{array}$$

Theorem

The solution provided by Algorithm 2 is optimal for the Type 2 path subproblem.

ヘロン ヘアン ヘビン ヘビン

э

Implementation Issue

Type 2 Path is suitable for a preprocessing phase

$$\overline{z}^2 = \overline{z}_a^2 + \left(\frac{-x_s + x_d}{\nu^G}\right); \tag{4}$$

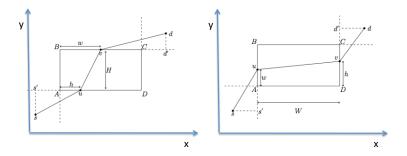
・ロット (雪) () () () ()

$$\overline{z}_{a}^{2} = \left(\frac{x_{A} + h_{2}^{*}}{\nu^{G}} + \frac{\sqrt{H^{2} + (w_{2}^{*} - h_{2}^{*})^{2}}}{\nu^{R}} + \frac{-x_{B} - w_{2}^{*}}{\nu^{G}}\right); \quad (5)$$

where \overline{z}_a^2 does not depend on *s* and *d*

Type 2 Path - Type 4 Path

A Type 4 problem is equivalent to a Type 2 problem where x_i and y_i are swapped for $i \in \{s, d, A, B, C, D\}$.



3

The Lower Bounding Algorithm

$$\overline{z}^{1} = \overline{z}_{a}^{1} + \left(\frac{y_{s} + x_{d}}{\nu^{G}}\right);$$

$$\overline{z}^{2} = \overline{z}_{a}^{2} + \left(\frac{-x_{s} + x_{d}}{\nu^{G}}\right);$$

$$\overline{z}^{3} = \overline{z}_{a}^{3} + \left(\frac{x_{s} + y_{d}}{\nu^{G}}\right);$$

$$\overline{z}^{4} = \overline{z}_{a}^{4} + \left(\frac{-y_{s} + y_{d}}{\nu^{G}}\right);$$

$$\underline{z} = \min\{\underline{z}^{1}, \underline{z}^{2}, \underline{z}^{3}, \underline{z}^{4}\}$$

ヘロア ヘビア ヘビア・

2

Computational Results

The lower bounding procedures were coded in C++ and embedded into a unidirectional A* algorithm implementation of Boost Graph Library.

The codes were run on a PC with a 2.53-GHz Intel Core 2 Duo processor and 4 GB of memory.

→ E → < E →</p>

Computational Results

We made use of three road networks of large European metropolitan area (OpenStreetMap)

- Paris about 113,000 arcs
- Madrid about 96,000 arcs
- Rome about 52,000 arcs

For each graph we identified n_R (possibly overlapping) rectangles with ν^R equal to 50 km/h.

く 同 と く ヨ と く ヨ と

We randomly generated 1500 origin-destination pairs

- Type a: neither s or d are located inside a rectangle; moreover the segment s – d does not intercept any rectangle;
- Type *b*: either *s* or *d* (but not both) are located inside a rectangle;
- Type c: s and d are located inside different rectangles;
- Type *d*: *s* and *d* are located inside the same rectangle;
- Type e: neither s or d are located inside a rectangle; however, the segment s – d intercepts at least a rectangle.

ヘロン 人間 とくほ とくほ とう

Type a: 300 randomly generated origin-destination pairs

Type b: 300 randomly generated origin-destination pairs

Type c: 300 randomly generated origin-destination pairs

Type d: 300 randomly generated origin-destination pairs

Type e: 300 randomly generated origin-destination pairs

v^G	α	Туре	EUCLIDEAN LOWER BOUND			NEW LOWER BOUND			DEVIATIONS	
			$Time_E \ [ms]$	δ_E	LB_E/z^*	Time [ms]	δ	LB/z^*	$\Delta_V(\%)$	$\Delta Time(\%)$
130	2.6	a	1.772	0.147	0.295	1.549	0.144	0.295	0.470	12.475
		b	6.864	0.556	0.311	5.893	0.552	0.325	3.242	14.913
		с	5.194	0.690	0.298	4.384	0.688	0.321	4.851	16.328
		d	1.983	0.867	0.263	1.572	0.870	0.331	12.352	22.924
		е	6.547	0.387	0.392	5.653	0.382	0.396	2.116	13.922
AVERAGE		4.472	0.530	0.312	3.810	0.527	0.334	4.650	16.151	
	1.8	a	1.517	0.124	0.404	1.331	0.121	0.404	0.534	12.008
90		b	5.456	0.592	0.438	4.637	0.585	0.458	5.461	16.366
		с	4.133	0.730	0.428	3.405	0.725	0.461	8.103	18.703
		d	1.524	0.898	0.380	1.124	0.906	0.479	19.453	28.745
		e	6.412	0.438	0.496	5.538	0.431	0.500	2.702	13.926
A	AVERAGE		3.808	0.557	0.429	3.207	0.554	0.460	7.324	18.014
	1.6	a	1.443	0.117	0.445	1.179	0.114	0.445	0.517	18.087
		b	4.944	0.604	0.490	3.884	0.594	0.512	6.635	23.124
80		с	3.729	0.743	0.481	2.812	0.737	0.517	9.907	25.818
		d	1.366	0.910	0.428	0.902	0.919	0.539	22.632	36.296
			e	6.318	0.456	0.536	5.069	0.449	0.540	2.925
A	AVERAGE		3.560	0.566	0.476	2.769	0.562	0.511	8.611	24.751
	1.4	a	1.338	0.108	0.497	1.138	0.105	0.497	0.534	14.741
70		b	4.258	0.616	0.556	3.422	0.602	0.582	5.461	21.932
		с	3.173	0.758	0.550	2.403	0.753	0.592	8.103	25.792
		d	1.161	0.923	0.489	0.748	0.936	0.612	19.453	37.850
		е	5.907	0.474	0.588	4.919	0.467	0.593	2.702	17.053
A	VERA	GE	3.168	0.576	0.536	2.526	0.573	0.575	10.788	23.571

Table 2: Computational results on the Rome instances : |A| = 52257 and $n_R = 10$

v^G	α	Туре	EUCLIDEAN LOWER BOUND			NEW LOWER BOUND			DEVIATIONS	
			$Time_E \ [ms]$	δ_E	LB_E/z^*	Time [ms]	δ	LB/z^*	$\Delta_V(\%)$	$\Delta Time(\%)$
130	2.6	a	9.027	0.076	0.357	8.524	0.076	0.357	0.076	5.561
		b	12.173	0.302	0.352	11.420	0.299	0.357	1.518	6.924
		с	5.898	0.499	0.323	5.434	0.498	0.333	3.378	8.681
		d	1.422	0.838	0.288	1.190	0.847	0.360	14.944	19.613
		e	20.620	0.224	0.396	19.449	0.223	0.397	0.424	5.890
A	AVERAGE		9.828	0.388	0.343	9.205	0.388	0.361	4.107	9.370
	1.8	a	6.474	0.050	0.503	6.160	0.050	0.503	0.076	4.832
90		b	8.914	0.326	0.501	8.364	0.318	0.508	1.518	7.444
		с	4.299	0.544	0.466	3.892	0.541	0.481	3.378	10.777
		d	1.054	0.890	0.416	0.814	0.905	0.521	14.944	26.917
		е	15.136	0.241	0.559	14.359	0.238	0.560	0.424	5.543
A	AVERAGE		7.175	0.410	0.489	6.718	0.410	0.515	4.107	11.161
	1.6	a	5.895	0.044	0.551	5.577	0.044	0.551	0.080	5.368
		Ь	7.848	0.332	0.555	7.285	0.323	0.563	3.758	8.852
80		с	3.738	0.560	0.524	3.312	0.556	0.541	8.151	13.012
		d	0.926	0.909	0.468	0.680	0.924	0.586	27.685	31.513
			e	13.468	0.247	0.612	12.688	0.244	0.613	1.100
A	AVERAGE		6.375	0.418	0.542	5.908	0.418	0.571	8.227	13.085
	1.4	a	5.436	0.040	0.608	5.235	0.039	0.608	0.107	3.679
70		b	7.014	0.344	0.617	6.574	0.333	0.627	5.168	8.559
		с	3.232	0.585	0.594	2.835	0.584	0.613	11.549	14.712
		d	0.806	0.930	0.535	0.559	0.954	0.666	34.650	36.986
		e	12.665	0.264	0.661	12.140	0.261	0.662	1.245	4.776
A	AVERAGE		5.831	0.433	0.603	5.469	0.434	0.635	10.636	13.831

Table 3: Computational results on the Paris instances : |A| = 113649 and $n_B = 6$

Gianpaolo Ghiani, Emanuela Guerriero A Lower Bound for the Quickest Path Problem

v^G	α	Туре	EUCLIDEAN LOWER BOUND			NEW LOWER BOUND			DEVIATIONS	
			$Time_E \ [ms]$	δ_E	LB_E/z^*	$Time \ [ms]$	δ	LB/z^*	$\Delta_V(\%)$	$\Delta Time(\%)$
130	2.6	a	6.287	0.098	0.445	6.015	0.098	0.445	0.087	4.359
		b	7.561	0.294	0.436	7.170	0.290	0.441	1.617	5.824
		с	5.721	0.453	0.380	5.366	0.452	0.391	3.237	7.375
		d	1.803	0.815	0.311	1.606	0.826	0.386	14.228	17.896
		e	12.199	0.227	0.493	11.653	0.226	0.494	0.420	4.678
A	AVERAGE		6.714	0.378	0.413	6.362	0.378	0.431	3.970	8.077
	1.8	a	5.262	0.084	0.544	4.997	0.084	0.544	0.075	5.080
90		b	6.123	0.313	0.551	5.709	0.306	0.556	2.767	7.636
		с	4.797	0.490	0.494	4.420	0.487	0.508	4.968	9.728
		d	1.598	0.856	0.414	1.364	0.873	0.515	20.819	24.784
		e	10.196	0.243	0.606	9.650	0.241	0.608	0.746	5.717
A	AVERAGE		5.595	0.397	0.522	5.228	0.398	0.546	5.952	10.663
	1.6	a	4.907	0.081	0.577	4.608	0.081	0.577	0.080	6.160
80		b	5.569	0.321	0.594	5.110	0.312	0.599	3.517	9.388
		с	4.385	0.508	0.544	3.978	0.505	0.559	5.933	11.656
		d	1.468	0.876	0.466	1.219	0.897	0.579	24.857	29.429
		e	9.609	0.254	0.640	8.987	0.251	0.642	0.811	6.846
A	AVERAGE		5.188	0.408	0.564	4.780	0.409	0.591	7.132	12.783
	1.4	a	4.544	0.077	0.616	4.350	0.077	0.616	0.119	4.354
70		b	4.912	0.329	0.646	4.563	0.319	0.652	4.663	8.706
		с	3.900	0.531	0.607	3.563	0.530	0.625	8.397	12.281
		d	1.328	0.899	0.532	1.098	0.927	0.658	30.616	33.558
		e	8.850	0.269	0.682	8.432	0.267	0.683	0.959	5.158
A	VERA	GE	4.707	0.421	0.617	4.401	0.424	0.647	9.069	12.924

Table 4: Computational results on the Madrid instances : |A| = 96757 and $n_R = 10$

• *LB_E*/*z*^{*} = 0.487, *LB*/*z*^{*} = 0.515

- The new lower bounding procedure is 3.88 times faster than Euclidean procedure (thanks to preprocessing phase)
- Average reduction of 28.87% in the number of nodes visited by A* (which is independent of the implementation)
- Average reduction in computing time is 14.36% (This speed-up is valuable for a typical web application setting)

ヘロト ヘ戸ト ヘヨト ヘヨト

- *LB_E*/*z*^{*} = 0.487, *LB*/*z*^{*} = 0.515
- The new lower bounding procedure is 3.88 times faster than Euclidean procedure (thanks to preprocessing phase)
- Average reduction of 28.87% in the number of nodes visited by A* (which is independent of the implementation)
- Average reduction in computing time is 14.36% (This speed-up is valuable for a typical web application setting)

ヘロン 人間 とくほ とくほ とう

- $LB_E/z^* = 0.487, LB/z^* = 0.515$
- The new lower bounding procedure is 3.88 times faster than Euclidean procedure (thanks to preprocessing phase)
- Average reduction of 28.87% in the number of nodes visited by A* (which is independent of the implementation)
- Average reduction in computing time is 14.36% (This speed-up is valuable for a typical web application setting)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- $LB_E/z^* = 0.487, LB/z^* = 0.515$
- The new lower bounding procedure is 3.88 times faster than Euclidean procedure (thanks to preprocessing phase)
- Average reduction of 28.87% in the number of nodes visited by A* (which is independent of the implementation)
- Average reduction in computing time is 14.36% (This speed-up is valuable for a typical web application setting)

ヘロン 人間 とくほ とくほ とう

• For type *d* and *c* instances (i.e., whenever the origins and destinations are inside an area with moderate speeds) we obtained even greater computing time reductions (up to 28.06%).

ヘロン ヘアン ヘビン ヘビン

э

• For type *d* and *c* instances (i.e., whenever the origins and destinations are inside an area with moderate speeds) we obtained even greater computing time reductions (up to 28.06%).

ヘロト ヘアト ヘビト ヘビト

э

Future Research

- Lower bounding procedure integrated into bidirectional A*
- Quick procedures for the selection of good rectangles (we used a simple heuristic)
- Combine our approach with the most recent speed-up techniques.
- Time-Dependent Scenario

・ 同 ト ・ ヨ ト ・ ヨ ト