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Introduction Motivation

One-to-Many-to-One Transportation

We study the area of one-to-many-to-one single vehicle pickup and
delivery problems (1-M-1 SVPDPs):

A single vehicle laves the depot and delivers a first commodity to
customers, it also collects a second commodity and brings it back to
the depot

Classical example: the vehicle delivers full
drink bottles to customers and retrieves
empty bottles to the depot

1-M-1 SVPDPs model many other
real-world situations (distribution of
electrical and electronic devices, courier
service transportation, reverse logistics, . . . )
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Introduction Motivation

General 1-M-1 SVPDPs Variants

Several variants are studied to better model the different real-world issues:

Here we focus on the general 1-M-1 SVPDPs (Gribkovskaia and
Laporte, 2008), where customers are not restrained to be visited once

The most common general variants are the following ones
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(c) selective pickups

Selective pickups case can lead to lowest costs and can generalize the
other cases (Golden&Assad, Oper. Res., 1986)
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Introduction Problem Description

Single Vehicle with Deliveries and Selective Pickups

We study the Single VRP with Deliveries and Selective Pickups (SVDSP):

we are given a graph G = (V ,A), where V = {0} ∪ P ∪ D ∪ PD

P = {pickup cust.}, D = {delivery cust.}, PD = {combined cust.}
each j ∈ D asks for a delivery of weight dj

each j ∈ P offers a pickup of weight pj and revenue rj

each j ∈ PD has both delivery and pickup

a vehicle of capacity Q

a traveling cost cij is associated with each arc (i , j) ∈ A

The SVDSP is to find a route that performs all deliveries and possibly
some pickups, and minimizes the total cost
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Introduction Problem Description

Single-demand vs Combined-demand

Two SVDSP cases are known in the literature:

single-demand (SD) case contains only customers in P or in D
combined-demand (CD) case may contain any type of customer

These two versions are, up to a certain extent, interchangeable:

CD generalizes SD
CD can be transformed into SD by duplicating combined customers
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D′ = D ∪ {jD ∀ j ∈ PD}

P ′ = P ∪ {jP ∀ j ∈ PD}
(b) selective pickups – network of the duplicates
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Introduction Problem Description

Prior Work

Probably all SVDSP algorithms in the literature refer to the network of the
duplicates and solve the SD case. In terms of exact algorithms:

Süral and Bookbinder (Networks, 2003): MILP formulation

Gribkovskaia, Laporte and Shyshou (C&OR, 2008): MILP formulation
+ Tabu Search

Gutiérrez-Jarpa, Marianov and Obreque (IIE Transactions, 2009):
branch-and-cut algorithm

Pros and cons of this idea:

Advantage: optimal solutions are Hamiltonian, so many classical
results from the literature can be reused

Disadvantage: network might be doubled in size

In our work we consider instead non-Hamiltonian solutions on the original
problem network
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Mathematical Formulations Two-Commodity Formulations

Two-commodity Hamiltonian (TCH) formulation

min zTCH =
∑

(i,j)∈A′
cijxij +

∑
j∈P′

rj(1− yj)∑
i∈V ′

xij = 1 ∀ j ∈ D ′ ∪ {0},∑
i∈V ′

xij = yj ∀ j ∈ P ′,∑
i∈V ′

(xij − xji ) = 0 ∀ j ∈ V ′,

f dij + f pij ≤ Qxij ∀ (i , j) ∈ A′,∑
i∈V ′

(
f dij − f dji

)
= dj ∀ j ∈ V ′ \ {0},∑

i∈V ′

(
f pji − f pij

)
= pjyj ∀ j ∈ P ′,∑

i∈V ′

(
f pji − f pij

)
= 0 ∀ j ∈ D ′,

xij ∈ {0, 1} ∀ (i , j) ∈ A′,

yj ∈ {0, 1} ∀ j ∈ P ′,

f dij , f
p
ij ≥ 0 ∀ (i , j) ∈ A′.

V ′ = {0} ∪ P ′ ∪ D ′

xij = 1 if vehicle travels
along arc (i , j), 0
otherwise
yj = 1 if pickup of j is
performed, 0 otherwise

f dij = flow of delivery
commodity

f pij = flow of pickup
commodity
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Mathematical Formulations Two-Commodity Formulations

Two-commodity non-Hamiltonian (TCNH) formulation

min zTCNH =
∑

(i,j)∈A
cijxij +

∑
j∈P∪PD

rj(1− yj)∑
i∈V

xij = 1 ∀ j ∈ D ∪ {0},∑
i∈V

xij = yj ∀ j ∈ P,∑
i∈V

xij ≥ 1 ∀ j ∈ PD,∑
i∈V

xij ≤ yj + 1 ∀ j ∈ PD,∑
i∈V

(xij − xji ) = 0 ∀ j ∈ V ,

f dij + f pij ≤ Qxij ∀ (i , j) ∈ A,∑
i∈V

(
f dij − f dji

)
= dj ∀ j ∈ V \ {0},∑

i∈V

(
f pji − f pij

)
= pjyj ∀ j ∈ P ∪ PD,∑

i∈V

(
f pji − f pij

)
= 0 ∀ j ∈ D,

xij ∈ {0, 1} ∀ (i , j) ∈ A \ A(PD),
xij ∈ {0, 1, 2} ∀ (i , j) ∈ A(PD),
yj ∈ {0, 1} ∀ j ∈ P ∪ PD,

f dij , f
p
ij ≥ 0 ∀ (i , j) ∈ A.

V = {0} ∪ P ∪D ∪ PD

xij = number of times
that vehicle travels
along arc (i , j)

yj = 1 if pickup of j is
performed, 0 otherwise

f dij = flow of delivery
commodity

f pij = flow of pickup
commodity
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Mathematical Formulations Two-Commodity Formulations

Some Properties

Property 1

For the SD case, TCNH is equivalent to TCH and thus provides the
optimal SVDSP solution value

Trivially checked by setting PD = ∅

Property 2

For the CD case, zTCNH ≤ zTCH and thus TCNH provides a relaxation of
the SVDSP

Proven by showing that any TCH solution is mapped into a TCNH one,
but the opposite does not hold
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Mathematical Formulations Two-Commodity Formulations

Solutions with Split Deliveries

TCNH accepts solutions where pickups and/or deliveries are split in the
two visits to combined customers
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(a) pickup p1 is split in two visits
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(b) no split of p1

Property 3

A TCNH solution with split deliveries or pickups can be transformed into a
solution having the same cost and for which no delivery or pickup is split

Done with a path-search algorithm (that might take exponential time!)
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Mathematical Formulations Two-Commodity Formulations

Solutions with Temporary Dropoffs

TCNH also accepts solutions where some part of the load is temporary
dropped off in the first visit to a customer, and then recollected during the
second visit
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(a) dropoff of 2 units of load in vertex 1
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(b) no dropoff but capacity exceeded on (2,3)

No nice property can help us here, so we deal with dropoffs with tailored
branch-and-cut (B&Cut) algorithms
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Mathematical Formulations Faster Relaxations

Benders’ Decomposition

We first obtain a Benders’ Based non-Hamiltonian (BBNH) formulation,
by projecting out from TCNH the two-commodity flow variables:

f dij + f pij ≤ Qxij ∀ (i, j) ∈ A,∑
i∈V

(
f dij − f dji

)
= dj ∀ j ∈ V \ {0},∑

i∈V

(
f pji − f pij

)
= pjyj ∀ j ∈ P ∪ PD,∑

i∈V

(
f pji − f pij

)
= 0 ∀ j ∈ D,

f dij , f
p
ij ≥ 0 ∀ (i, j) ∈ A.

When a solution is found for the “difficult” (x , y) variables, we solve the
dual of the above linear subproblem (DSP). If unbounded, we obtain the
following Benders’ feasibility cut:∑

(i,j)∈A
(Qtrij)xij +

∑
j∈V\{0}

djv
r
j +

∑
j∈P∪PD

(pjw
r
j )yj ≤ 0 ∀r ∈ R,

where R denotes the set of the extreme rays of the DSP
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Mathematical Formulations Faster Relaxations

Cutting Planes Generation

Benders’ cuts are weak, so we tried to improve them (but failed).
However, we found additional families of valid inequalities, and provided
for them polynomial-time separation procedures (max-flow). We solved
the resulting Two-Index Non-Hamiltonian (TINH) formulation by B&Cut

There are several ways to implement a “modern” B&Cut:

separate at fractional nodes (classical)

separate at integer nodes (Subramanian et al., OR Letters, 2011)

separate outside the MILP (Pferschy and Staněk, tech. rep., 2014)

Our best B&Cut for TINH:

separate Benders’ cuts only when new incumbent is found

separate all other cuts at integer nodes
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Mathematical Formulations Faster Relaxations

An example of a Valid Cut

Property 4

The following capacity constraint is valid for the SDSP:

Qx(S̄ : S)−
∑
j∈S

pjyj ≥ d(V )− d(S)− Q ∀S ⊆ V \ {0} : p(S)− d(S) > Q − d(V )

where S̄ = V \ S \ {0}, d(S) =
∑

j∈S dj , p(S) =
∑

j∈S pj

Property 5

Capacity constraints

can be separated in

polynomial time

n+1

j

j

k

i

dj

Q +
pj(1−ȳj)

Q

dj

Q +
pj(1−ȳj)

Q

dk

Q + pk(1−ȳk)
Q

di

Q + pi(1−ȳi)
Q

x̄jk

x̄ji +
pj

Q

x̄ki

x̄ji +
pj

Q
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Mathematical Formulations Branch-and-Cut Algorithms

B&Cut algorithms for the CD case

The B&Cut for TINH solves to optimality the SD case, but only provides a
relaxation for the CD case. We used it as a basis for CD exact algorithms:

1 Throw-Away (TA): inside B&Cut for TINH, when a new incumbent is
found, check if it is feasible (i.e., it has no dropoffs). If not, simply
disregard solution

2 2-Steps (2S): first invoke B&Cut for TINH. If final solution is not
feasible, invoke TA (but initialize it with all cuts already generated)

3 Minimal Network of the Duplicates (MND): invoke B&Cut for TINH
but disregard Benders’ cuts. Check if capacity or dropoff are violated
in final solution. If so, duplicate the CD customer originating the
violation and re-iterate (inserting all generated cuts)
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Computational Results

Single-Demand Case

Algorithms coded in C++, all tests run with Cplex 12.6, i7 3.4 GHz, 3600 sec t.lim.

literature new

SB GMO∗ TCNH BBNH TINH
SB benchmark # opt sec opt sec opt sec opt sec opt sec

(|V |=10) 24 24 1.8 24 0.0 24 0.1 24 0.0 24 0.0
(|V |=20) 21 18 461.2 21 0.2 21 0.5 21 0.5 21 0.0
(|V |=30) 18 14 823.2 18 0.6 18 2.3 18 3.1 18 0.1

SB All 63 56 389.6 63 0.2 63 0.9 63 1.1 63 0.0

GMO benchmark # opt sec opt sec opt sec opt sec opt sec

(25≤ |V | ≤30) 18 18 32.3 18 2.2 18 1.5 18 4.8 18 0.1
(40≤ |V | ≤60) 39 21 2441.8 39 47.0 39 44.1 36 466.4 39 3.6
(68≤ |V | ≤90) 17 3 3898.4 16 3510.8 17 314.6 6 2513.0 17 37.3

GMO All 74 42 2190.4 73 831.9 74 95.9 60 824.3 74 10.5

SB = Süral and Bookbinder (2003)

GMO = Gutiérrez-Jarpa, Marianov and Obreque (2009), run with with Cplex 10,
Dual Core AMD 2.7 GHz, 21000 sec t.lim.
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Computational Results

Combined-Demand Case

Algorithms coded in C++, all tests run with Cplex 12.6, i7 3.4 GHz, 3600 sec t.lim.

Hamiltonian non-Hamiltonian

GLS SB TCH TA 2S MND
GLS benchmark # opt sec opt sec opt sec opt sec opt sec opt sec

(15≤ |V | ≤30) 28 1 3487 5 2961 23 915 28 0.4 28 0.4 28 0.2
(32≤ |V | ≤50) 24 0 3600 0 3600 1 3592 21 837.3 19 833.2 24 5.2
(71≤ |V | ≤100) 16 0 3600 0 3600 0 3600 10 1412.1 10 1369.0 (∗)15 375.5

All GLS 68 1 3553 5 3336 24 2492 59 628.0 57 616.4 67 90.3

GLS = Gribkovskaia, Laporte and Shyshou (2008)

SB = Süral and Bookbinder (2003)

* = remaining instance solved to proven optimality in about 4.7 CPU hours

Bruck, Iori (DISMI)non-Hamiltonian Formulations ROUTE – 2014 18 / 20



Conclusions

Conclusions

We developed new formulations that exploit the original non-Hamiltonian
structure of the problem and provided a few theoretical properties

By developing several B&Cut algorithms we found good computational
results, especially for the more general combined-demand case

Solutions are frequently non-Hamiltonian. Temporary dropoffs, if allowed,
are frequent

Ideas can be extended to several other general PD problems:

Mixed deliveries

Backhaul deliveries

Single vehicle problems with dropoff

Multiple vehicle problems (with and without transhipment)
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Conclusions

Thank you very much for your attention

Comments and questions are welcome
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