Meta-heuristics for Synchronized Multi-Zone Multi-Trip Pickup and Delivery Problems

Teodor Gabriel Crainic TeodorGabriel.Crainic@CIRRELT.net Phuong Khanh Nguyen, Michel Toulouse

Chair in Logistics Management

Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport

PICKFORD DOUGLAS FAIRBANKS

"TAMING THE SHREW" adapted and directed by SAM TAYLOR

Chair in Logistics Management

Outline

- Problem motivation and description
- The multi-zone, multi-tour pickup and delivery problem with time windows and synchronization
- Modelling
- A tabu search meta-heuristic
- Experimental results

Most City Logistics literature addresses inbound movements only

CIRRELI

CIRRELT

Our Goals

• Focus on the second-tier routing problem ★ Demand time-dependency \bigstar Synchronization at satellites (hard time windows) \star Customer time windows \star Multiple tours, multiple zones Address more traffic types \star e2c and c2e (*) MZT-PDTWS, the multi-zone, multi-tour pickup and

delivery problem with time windows and synchronization

Problem Definition

- S A fleet of homogeneous vehicles
 ★ Capacity Q, fixed cost F
- S Depot g

ESG UQÀM

- Supply points $s \in S$, pickup-customer demands $p \in P$, delivery-customer demands $d \in D$
- S Delivery-customer demand d

Chair in Log

★ Demand q_d, service time δ(d), hard time window
 [e_d, l_d]
 ★ Serviced from a given supply point s ∈ S

Problem Definition (2)

S Pickup-customer demand p

★ Demand q_p , service time $\delta(p)$, hard time window $[e_p, l_p]$

★ Serviced from a supply point **to be selected** in $S_p \subseteq S$

Sech supply point s services

★ Set of **given** delivery-customer demands D_s

 \star Set of pickup-customer demands P_s to be determined

★ Unloading time $\delta_1(s)$, loading time $\delta_2(s)$

★ No wait, hard time window $[t_1(s), t_2(s)]$ for both unloading and loading

Problem Definition (3)

S Operation Strategy?

★ Many possibilities to interlace e2c and c2e activities
★ Each requiring different operations at satellites
★ More flexibility = More efficiency (less vehicles), but
★ Aim for "simple" satellite operations & management

15

Seudo-Backhaul strategy

- ★ A delivery or pickup phase must be completed before another can start
- LIFO loading & unloading

CIRRE

Waiting Stations $w \in W$

Route Building Blocks

• Delivery leg: partial route run by a vehicle that starts at a supply point *s*, loads freight, delivers to one or several deliverycustomer demands in D_s . • Pickup leg: partial route run by a vehicle that visits one or several pickup-customer demands p in P_s to load freight, may wait at a waiting station, and ends at the supply point *s* to unload all freight.

CIRRELT

The MZT-PDTWS

- S Minimize the sum of
 ★ Fixed vehicle cost
 ★ Routing cost
- S Assign pickup demand customers to one of permitted supply points
- Satisfy time-dependent demand with its time windows
- S Visit supply points within time windows
- S Vehicle capacities

A Tabu Search Meta-heuristic

Two decision levels:

- ★ High: vehicles (routes) are assigned to supply points
 ★ Low: pickup/delivery legs created by assigning pickup/delivery-customer demands to vehicles
- Source Both decisions are adjusted along the search by using leg and routing neighborhoods
 - ★ Usage dynamically adjusted
- S Control procedure: control dynamically the selection of neighborhood types
- S Diversification strategy guided by an elite set and a frequency-based memory

Generate an initial feasible solution z

Elite set $E \leftarrow \emptyset$; $z_{\text{best}} \leftarrow z$

Probability of selecting routing neighborhood with respect to leg neighborhood $r \leftarrow 1$ STOP $\leftarrow 0$

Repeat

ESG UQÃ

```
Select a neighborhood based on r

Explore the selected neighborhood of z \& identify the best solution z' in N(z)

if z' is better than z_{best} then \{z_{best} \leftarrow z', Add z_{best} to the elite set E; Manage E \}

z \leftarrow z'
```

```
if z_{best} not improved for IT_{CNS} iterations then
```

Chair in Logistics Management

{ if z_{best} not improved after C_{CNS} consecutive executions of *Control* procedure then

```
{ if E \leftarrow \emptyset then STOP \leftarrow 1
```

else { Select randomly *z* (and remove it) from *E Diversify* the current solution *z* }

} else { Call Control procedure to update the value of r

```
z \leftarrow z_{best} }
```

} **Until** STOP $z_{best} \leftarrow Post_Optimization(z_{best})$

Search Space

Feasible and infeasible solutions

★ Violations of vehicle capacity q(p), supply point time window w_s(p), customer demands time window w_c(p)
 (*) Weighted fitness function

 $f(p) = c(p) + \alpha_1 q(p) + \alpha_2 w_c(p) + \alpha_3 w_s(p)$

Penalty parameters α₁, α₂, α₃ dynamically adjusted with respect to the evolution of violations
 (Cordeau el al. 2001)

Initial Solution

- S Assign each pickup customer demand to one of the supply points in its set
 - ★ "Balance" at each supply point, the total incoming load (picked up at *p* customers) and K_s the total load that must be moved out of the supply point and delivered to *d* customers
- Solution Build routes with those assignments

Initial Pickup Customer Assignment

- S Pickup-customer demands handled in random order
- S Each pickup-customer demand p assigned to a supply point s∈ S_p such that the value of K_s is respected
 ★ s is closest to p if this assignment does not violate K_s
 ★ s is selected randomly from S_p {closest to p}, otherwise

Initial Vehicle Routes

Suild each vehicle route sequentially in two phases:
 ★ Determine the first supply point for the current vehicle: unrouted customer demands + the earliest opening time

★ Create legs sequentially by applying a greedy algorithm

25

Two Types of Neighborhoods

S Routing neighborhoods

★ Improve routing by using different intra and inter route neighborhoods commonly used in the VRPTW literature

Leg neighborhoods

★ Move supply points (and associated legs) between vehicle routes

Routing Neighborhoods

- Work on the sets of pickup and delivery legs separately
- Three types, all involving two customer demands
- Relocation move
 - ★ One of two customer demands is taken from its current position and inserted after the other one
- S Exchange move
 - ★ Two customer demands are swapped
- S 2-opt move

ESG UQÀM

★ Customer demands belong to the same leg: 2-opt
 ★ Customer demands belong to different legs: 2-opt*

Routing Neighborhoods & Pickup Customers • Pickup-customer p reassigned to the next supply point s in the new route, if $s \in S_p$ (penalty adjustments, if needed) d_1 d_2 p_1 p_2 p_3 s_2 d_5 d_6 d_7 S₁ Sz Veh₁₁ Exchange (p_2, p_4) S₃ Veh_w d_5 d_3 d_A p_4 **p**₅ S_{n} Pickup-customer demand *p* **Current assignment** S_{1}, S_{2} p_1 S_2 *s*₂, *s*₃ p_2 Sa S_2 p_3 S_2 s_1, s_2, s_3 p_{4} S_2 ESG UQ S_1, S_2, S_3 Sz p_5 Crainic 2014 CIRRELT

Leg Neighborhoods

Selocate supply point: remove a supply point and its legs (customer demands it services) from a route and insert them into another route

Leg Neighborhoods (2)

S Exchange supply points and legs between routes

CIRRELT

Leg Neighborhoods (3)

- Reassignment of pickup-customer demands to supply points
- Concatenation of two pickup/delivery legs when assigned to the same supply point

Handling Two Types of Neighborhoods

- One neighborhood is selected at each iteration
- All neighborhoods start with the same probability of being selected
- The probability of selecting supply point neighborhoods decreases in time (the *Control* procedure)

Diversification

- Capitalize on the best attributes obtained so far
- Provide a certain level of diversity of the search.
- S Elite set: best (& diversified) solutions identified so far
- Frequency memory: used arcs & supply point assignment to pickup customer demand
- Procedure
 - \star Take a solution from the elite set
 - ★ Perturb this solution by removing arcs frequently used and introducing little seen assignments
 ★ Proceed by penalizing move evaluations

Post optimization

Supply-point improvement of pickup-customer demands to supply point assignments

- ★ Pickup-customer demands are handled in random order
- ★ Assign each pickup-customer demand p to its unassigned supply point $s' \in S_p$, then re-route p (by the cheapest insertion); Keep the best one
- Leg improvement of routing
 - ★ Intra-route: 2-opt of Lin (1965) and Or-opt of Or (1976)
 - ★ Inter-route: λ -interchange of Osman (1993) [λ =1,2] and CROSS-exchange of Taillard et al. (1997)

Experimental Results

90 instances

Problem set	ВН	#Customers	#Supply points	#Waiting stations	#Supply points available for each pickup customer
A1		400-800	4	4	1-2
A2		400-800	8	4	1-2
B1	{ 0.1 ,	1600-3200	16	16	1-3
B2	0.5, 0.5}	1600-3200	32	16	1-3
C1		3600-7200	36	36	1-4
C2		3600-7200	72	36	1-4

The second secon

Design Alternatives

S Calibration of parameters ★ Generally defined as functions of problem size S Diversification, elite set, memory are important

90 instances					
Without DiversificationWith Diversification					
	Elite set	Elite set & frequency-based diversification strategy			
104064.61	103252.92	102524.49			
	-0.78%	-1.48%			

Numerical Results

Set	Best 10	Avg 10	#Vehicles	DM(%)	PD(%)	Time (min)
A_1	21286.18	21445.59	22	29.73	56.64	37
A_2	18677.89	18832.46	17	30.60	55.44	21
B_1	80395.99	80574.20	50	29.65	47.38	145
B ₂	75167.19	75317.25	41	25.11	47.23	112
C ₁	214930.60	215146.80	103	23.41	47.48	395
C ₂	204689.10	204982.00	93	23.10	45.11	224
Avg	102524.49	102716.40	54	26.94	49.88	156

(%): time % vehicles move directly to supply points without waiting stations

(%): time % vehicles both unload and load once they arrive at supply points

Compared with the VRP with Backhauls

VRP with Backhauls and Time Windows

Gelinas et al. (1995): 15 instances (100 customers)

Authors	Method	CNV	CTD
Thangiah et al. (1995)	2-phase heuristic	274	24051.9
Potvin et al. (1996)	Genetic	267	23317.1
Reimann et al. (2002)	Ant system	265	23514.93
Reimann and Ulrich (2006)	Ant colony optimization	261	23942.44
Ropke and Pisinger (2006)	LNS	259	23416.81
Our work (F=0)	Tabu	263	23395.51

Competitive with respect to total distance, outperforming four out of the five meta-heuristics (average gap =1.08%, maximal gap = 2.81% and a minimal gap = -0.34%)

ESG UQÀM

VRP with Backhauls and Time Windows (2)

	AuthorsThangiah et al. (1995)Potvin et al. (1996)		Method	CNV	СТД	
			2-phase heuristic	274	24051.9	
			Genetic	267	23317.1	
	Reimann et al. (2002)		Ant system	265	23514.93	
	Reimann and Ulrich (2006) Ropke and Pisinger (2006)		Ant colony optimization	261	23942.44	
			LNS	259	23416.81	
	Our work (F=0)		Tabu	263	23395.51	
	F = c		ivgcost	261	24084.11	2.94%
F = 1 $F = 1$		1.1 * avgcost	261	24204.43	3.45%	
		F = 1	1.2 * avgcost	261	24232.07	3.57%
F = 2			1.3 * avgcost	261	24152.52	3.23%
ES		istics Ma	nagement			

VRP with Backhauls (Without Time Windows)

- S Compared with published tabu search methods
- Two instance sets:
 - ★ Goetschalckx & Jacobs-Blecha (1989): 62 instances ([25, 150] customers)
 - ★ Toth and Vigo (1997): 33 instances ([21, 100] customers).

Authors	Goetscha Blo	alckx and Jacobs- echa (1989)	Toth and Vigo (1997)		
	Cost GAP to BKS (%)		Cost	GAP to BKS (%)	
Osman and Wassan (2002)	291261.7	0.25	708.42	1.09	
Brandao (2006)	291160.5	0.21	702.15	0.19	
Wassan (2007)	290981.8	0.15	706.48	0.81	
Our work	290964.4	0.14	705.49	0.67	

Conclusions and Perspectives

- The algorithm performs well on rather large instances
- It also performs well on well-known VRP with backhauls problems
- Interesting future questions
 - ★ There are more neighborhoods one could try out
 - ★ More complex operation strategies
 - ★ Integrating c2c movements
 - ★ Bounds and "exact" methods
 - ★ Two-level settings

© Teodor Gabriel Crainic 2014

CIRRELT

Interlacing Delivery & Pickup Phases in e2c+c2e

Integrating Intra-City Demand

S What operations allowed at supply points when considering c2c demand?

Joint e2c & c2c Routing – What Satellite Work?

CIRRELT

ESG UQÀM

Joint 2c & c2c Routing – What Satellite Work?

Perspectives

 The more comprehensive the integration & "complete" the system: the larger the benefits
 Eess vehicles, congestion, pollution, ...

- The more flexibility is allowed in adjusting the plan to "revealed" demand: the larger the benefits
 Costs, km traveled, capacity utilization ...
- The more important the management challenges
 Flexibility & agility work rules & labor relations
 The more "interesting" the methodological challenges

