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Capacitated vehicle routing problem

static version

Capacitated vehicle routing problem
(CVRP):

oVisit all customers exactly once.
eEach customer has a demand gq..
eEach vehicle has a capacity Q.

eSum of demands on a route < vehicle
capacity

eObjective: Minimize the cost of edges
used in the solution.
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VRP with stochastic demands (VRPSD)

vehicle routing problem with

stocastic demand (VRPSD)

eVisit all customers.

eThe demand of each customer i is

given by a random variable g;. Its

probability distribution is assumed to be
known. We assume the variables are @
independent.

eEach vehicle has a capacity Q.

eWe have to plan routes in advance.

When executing the plan it may turn out

that we the planned route violate the

capacity constraint. In that case the @
vehicle returns to the depot to

empty/restock the vehicle.

eExpected demand on each route @
cannot exceed Q.

eObjective: Minimize the expected cost

of the solution.
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VRP with stochastic demands (VRPSD)

Vehicle capacity: 6
Poisson distribution - probability mass function
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Assume all customers have expected demand 2.

One realization of the random variables: 3, 2, 2
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VRP with stochastic demands

Poisson distribution - probability mass function
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Vehicle capacity: 6
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We deliver one unit to customer 3 at the first visit and \r 0
another at the second visit.
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VRP with stochastic demands (VRPSD)

Vehicle capacity: 6

The extra trip back to the depot is the
“recourse action”.

We make decisions in stage 1 where we plan
the routes for our vehicles.

In stage 2 the routes are followed blindly and
any infeasibilities are “repaired” using the
recourse action.

This type of problem is a two-stage stochastic
problem with recourse.

Cost of extra trips to the depot is called
recourse cost.
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VRP with stochastic demands (VRPSD)

Vehicle capacity: 6
What if realization of the random variables was:
3, 2’ 2 ? @ _ @

In that case we will still continue to node 3
even though the vehicle is full after visiting Planned
node 1. route
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Recent exact methods

Paper | Method | Testdata

Gendreau, Integer L- Uniform
Laporte, Segum shaped method distributions in
(branch and different
cut) intervals
Laporte Integer L- Poisson and Yes
Louveaux, shaped method normal
Van Hamme (branch and distribution
cut)
Jabali, Rei, Integer L- Truncated yes
Gendreau, shaped method normal
Laporte, 2013 (branch and distribution
cut)
Christiansen &  Branch and Poisson Yes

Lysgaard 2007  price distribution
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Formulating VRPSD using a set partitioning
model

o V.=1{1,...,n}. Set of customers.
e (2 : set of all feasible VRPSD routes.
e cp . expected cost of route p € €2.

e a;, . constant that is 1 if customer i is visited by route p and
O othervise.

e yp . binary variable that is 1 if and only if path p € €2 is used
in the solution.

peS2
Subject to:
Z aipyp = 1 Vi e Ve
peS2
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Formulating VRPSD using a set partitioning
model

o V.=1{1,...,n}. Set of customers.
e (2 : set of all feasible VRPSD routes.

e cp . expected cost of route p € €2.

® a;, . constant th
O othervise.

is 1 if customer ¢ is visited by route p and

e yp . binary variable that isN_if and only if path p € €2 is used

i

in the solution. min Expected cost consist of:
« Normal cost of traversed arc +
Subject to: - Expected cost of recourse actions
Z AipYp = 1 Vi € Ve
peS2
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Properties of set partitioning approach

e LP relaxation of set partitioning problem is solved by column generation
e ... and the entire problem is solved by branch-(and-cut)-and-price.

e Stochasticity is "removed” from master problem and "hidden” away in
definition of variables.

e If we can compute expected recourse cost correctly when solving the
pricing problem then we can also solve the entire problem.

e We can reuse many techniques developed for static CVRP since
stochasticity is hidden away in sub-problem.

e Approach was first proposed in:

e C.H. Christiansen and J. Lysgaard. A branch-and-price algorithm for the
capacitated vehicle routing problem with stochastic demands. Operations
Research Letters, 35:773?781, 2007
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Calculating expected recourse cost of a route

e Let p(s) be the customer at position s in the route and let & be the random
variable associated with the demand of customer q.

e The probability of having the first failure at customer j is:

J—1 J
P(D 6 Q<D &)
s=1 s=1

The probability of having the {’th failure at customer j is:

(Zﬁp(b) <IlQ < Zﬁp(b )

s=1

the expected recourse cost associated with customer j is

00 a—1 i
)3 P( D Gt SIQ <) €p<s>) 2€0,p(7)
[=1 s=1 s5=1

the expected recourse cost of the route is (the number of customers on the route
is 1)

12 < = TYP(T&(&) S < Zﬁm ))2(;0 p(j)

j=11=1 s=1

—
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Calculating expected recourse cost of a route

i

(from last slide): The expected recourse cost of the route is (the number of cus-
tomers on the route is t)

ZZP(Z‘SP(S) <IQ < Z‘Sp(s )200 p(5)

j=11i=1 s=1

Define '
7
=P (Z Epis) < :c>
s=1

Notice that F¥ is the cumultative distribution function of the random variable Zgzl Ep(s)-
The expected recourse cost of the route can be rewritten

0 =233 (F/710Q) — FI(1Q)) o,

j=11=1
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Assumptions needed

e Customer demands are independent random variables
e All demands should follow the same distribution W,
e The distribution (W) should have the accumulative property

- That is, the sum of two or more W-distributed random variables is
itself a W —-distributed random variable

— We should be able to describe the distribution of each random
variable by a number of parameters

e Examples of distributions that have the accumulative property: normal,
Gamma, poisson, exponential distribution.

e In the following we use the poison distribution
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Poisson distribution =
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if §; and §; have a Poisson distribution with parameter A; and A;, respectively
then & + &; is Poisson distributed with parameter A; 4 A;
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Christiansen/Lysgaard insight

Let P, and P» be two different partial routes from the depot to customer
i.

Let £(P;) be the random variable corresponding to the sum of the variables
corresponding customers visited by route P;.

Assume that £(P;) and £(F2) have the same distribution.

Assume further that the expected cost of P is lower than that of Py and
that any extension of P also is feasible for P

In this case P; dominates Ps.

16 DTU Management Engineering, Technical University of Denmark

i



Christiansen/Lysgaard pricing algorithm
(Poisson distribution)

i

e Shortest path computation in
an expanded graph.

e Special care taken to
eliminates two-cycles

(ordinary shortst path n-1 Q Q Q o0 o
computation would allow
Highe OO0
e Higher order cycles are n Q
possible. ® ©o o °
g ® ® ® PY
e
2 OO0 OO
O
2 OO0 OO

12000 ++OC

Expected Demand (parameter of distribution)
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Christiansen/Lysgaard pricing algorithm
- interpretted as labeling algorithm

i

e The Chrisitansen / Lysgaard approach can be implemented with a labeling
algorithm with labels
L=1(ic, N

with 7 being node, ¢ expected cost of the partial path represented by label,
A parameter for distribution. A label is feasible if A < Q.

e Dominance: Label I.; dominates Lo if

nH=iaNc1t <ca AN\ = Ay

¢ We show that this can be improved to:
11 =1a/Nc1 <o AN < A

for the poisson distribution and

1 1
11 =10/ <o N — < —
1 2 1 S Co IV

for the exponential distribution.



Improved dominance for Poisson
distribution

e Remember, the expected recourse cost of a route can be written

:2Zi F‘? IZQ Fj(lQ))COij

j=11=1

with

J
=P (Z Ep(s) = 5‘9)
s=1
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Improved dominance for Poisson
distribution =

New notation: FP%(z, )\) is the cumulative distribution function for Pois-
son distribution with parameter \.

We extend L; by a partial route with total expected demand d + A with
A being the difference in expected demand between last and second to
last customer on extension. Probability of {’th failure at last customer of

extension:

FPOIQ, M+ d) — FP(1Q, M + d + A)

Similar for label Lo:
FPOUQ, Mo + d) — FPUIQ, Ao+ d + A)
If we can show
FP(1Q, M+d)—FP(IQ, M +d+A) < FP(1Q, Ao+d)—FP(1Q, Ma+d+A)

foralll € N,d > 0,A >0, s +d+ A < @Q then probability of failure for
all feasible extensions of L» is higher than the same extension of L;.
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Improved dominance for Poisson

distribution =
New notation: | on for Pois-

son distribution |
this follows from f(\) = FP%(z,\) (x .
We extend Ly B ig 4 constant here ) being concave and |¢ T A with

A being the dif  popdecreasing in the interval 10,x] d second to
last customer o1 customer of
extension:

Frog A T d) - FrUQ A T AT D)
Similar for label Lo:

EFPOQ, Mo+ d) — FPOIQ, Ay + d + A)
If we can show
FPIQ, MA-d)—FP(IQ, M +d+A) < FPU(IQ, Ao +d)—FP (1Q, Ao+d+A)

foralll € N,d > 0,A >0, s +d+ A < @Q then probability of failure for
all feasible extensions of L» is higher than the same extension of L;.
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Other improvements compared to
Christiansen/Lysgaard approach

e Eliminating more cycles using ng-routes
e Adding valid inequalities known from the CVRP.
e Strong branching

22 DTU Management Engineering, Technical University of Denmark
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Results (all with Poisson distributed demands)

BCP Christiansen & Lysgaard
Time(s) Opt RootlB BB |Time(s) Opt LBroot BB
A-32-5 7 X 843.80 853.60 282 X 817.31 853.6
A-33-5 2 X 702.64 704.20 8 X 700.01 704.2
A-33-6 2 X 792.81 793.90 49 X 775  793.9
A-34-5 5 X 822.78 826.87 - 803.26 825.26
A-36-5 9 X 851.74 858.71 - 838.83 852.09
A-37-5 27 X 700.06 708.34 - 687.4 707.54
A-37-6 6 X 1025.66 1031.16 - 1007.98 1030.44
A-38-5 24 X 768.30 775.14 - 739.19 761.12
A-39-5 1 X 869.18 869.18 3 X 866.92 869.18
A-39-6 9 X 873.24 876.60 279 X 850.09 876.6
A-44-6 52 X 1019.01 1025.48 - 1007.55 1021.29
A-45-6 20 X 1017.18 1026.73 - 984.38 1006.88
A-45-7 19 X 1261.44 1264.83 882 X 1254.23 1264.83
A-46-7 9 X 999.47 1002.22 - 986.39 999.87
A-48-7 14 X 1183.99 1187.14 - 1160.52 1180.22
A-53-7 123 X 1112.89 1124.27 - 1093.64 1109.34
A-54-7 137 X 1280.69 1287.07 - 1262.49 1279.93
A-55-9 15 X 1175.88 1179.11 - 1148.4 1173.56

BCP. TL 7200 sec, Intel Xeon 2.66Ghz
C&L. TL 1200 sec, Pentium Centrino 1.5Ghz. Guestimate: 3 times slower than Xeon.
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Results (all with Poisson distributed demands) ==
BCP Christiansen & Lysgaard ~
Time (s) Opt Root LB BB Time (s) Opt LB root BB
A-60-9 7215 - 1508.45 1522.83 - 1489.82 1503.65
E-22-4 0 X 411.57 411.57 1 X 409.86 411.57
E-33-4 5 X 850.27 850.27 86 X 844.35 850.27
E-51-5 1298 X 542.12 553.26 - 538.75 544.63
P-16-8 0 X 512.819 512.819 0 X 511.27 512.82
P-19-2 6 X 222.564 224.062 153 X 210.9 224.06
P-20-2 46 X 225.279 233.054 352 X 221.11 233.05
P-21-2 0 X 218.962 218.962 5 X 217.75 218.96
P-22-2 27 X 225.757 231.341 219 X 223.67 231.26
P-22-8 0 X 681.06 681.06 0 X 677.97 681.06
P-23-8 0 X 619.527 619.527 1 X 619.52 619.52
P-40-5 2 X 472.497 472.497 9 X 471.47 472.5
P-45-5 203 X 525.948 533.522 - 519.03 527.77
P-50-7 17 X 578.419 582.371 - 573.66 581.19
P-50-8 40 X 663.973 669.23 - 659.67 666.9
P-50-10 21 X 752.082 758.764 - 750.27 756.52
P-51-10 6 X 807.477 809.7 430 X 802.58 809.7
P-55-7 73 X 585.134 588.563 - 582.12 585.47
P-55-10 42 X 736.556 742.41 - 734.69 740.02
P-55-15 10 X 1064.57 1068.92 792 X 1062.67 1068.05
P-60-10 220 X 796.201 803.604 - 793.71 798.63
P-60-15 8 X 1083.9  1085.49 - X 1080.85  1085.12

BCP. TL 7200 sec, Intel Xeon 2.66Ghz
C&L. TL 1200 sec, Pentium Centrino 1.5Ghz. Guestimate: 3 times slower than Xeon.



More tests

e Tested on 91 instances based on standard CVRP instances.
e 69 could be solved to optimality within 2 hours.

e Largest solved instance: 100 customers.

e Smallest unsolved instance: 33 customers.

25 DTU Management Engineering, Technical University of Denmark

i



Conclusion

e Significant improvement compared to existing branch-and-price
algorithm.

e Approach is promising — at least for some distributions

e Future work (to name a few directions)
e Compare to integer L-shaped methods (branch and cut).
e Check if improved dominance work for more distributions

e Understand why some small instances are difficult (poor lower bounds).

e Understand the role of each improvement suggested.
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