A new polynomial algorithm for nested resource allocation, speed optimization and other related problems

Thibaut VIDAL ${ }^{1,2}$, Patrick JAILLET ${ }^{1}$, Nelson MACULAN ${ }^{3}$

${ }^{1}$ MIT - Massachusetts Institute of Technology, USA
${ }^{2}$ PUC-Rio - Pontifical Catholic University of Rio de Janeiro, Brazil
${ }^{3}$ COPPE - Federal University of Rio de Janeiro, Brazil

$$
\begin{gathered}
\text { ROUTE } 2014 \\
\text { June } 1-4^{\mathrm{TH}}, 2014
\end{gathered}
$$

Contents

(1) Research context

- Timing problems in vehicle routing
- Hierarchy of features
- Re-optimization
(2) Problem statement
- Nested resource allocation problems
- ϵ-approximate solutions
- Existing algorithms
- A proximity theorem
(3) Proposed Methodology
- A new decomposition algorithm
- Convergence and complexity
(4) A remark on the expected number of active constraints
(5) Computational experiments

Contents

(1) Research context

- Timing problems in vehicle routing
- Hierarchy of features
- Re-optimization
(2) Problem statement
- Nested resource allocation problems
- ϵ-approximate solutions
- Existing algorithms
- A proximity theorem
(3) Proposed Methodology
- A new decomposition algorithm
- Convergence and complexity

44 A remark on the expected number of active constraints
(5) Computational experiments

Timing problems in vehicle routing

- General effort dedicated to better address rich vehicle routing problems involving many side constraints and attributes
- Observation : many rich VRPs are hard because of their time features: (single, soft, or multiple) time windows, time-dependent, flexible or stochastic travel times, various time-dependent costs, break scheduling...
- Timing subproblems: similar formulations in various domains: VRP, scheduling, PERT, resource allocation, isotone regression, telecommunications...
- Cross-domain analysis of timing problems and algorithms:
- T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A Unifying View on Timing Problems and Algorithms. Submitted \& revised to Networks. Tech. Rep. CIRRELT 2011-43.

Some examples

- Four different applications

isotonic regression

- VRP with soft time windows. Optimizing arrival times for a given sequence of visits σ :

$$
\begin{array}{lr}
\min _{\mathbf{t} \geq \mathbf{0}} & \alpha \sum_{i=1}^{|\sigma|} \max \left\{e_{\sigma(i)}-t_{\sigma(i)}, 0\right\}+\beta \sum_{i=1}^{|\sigma|} \max \left\{t_{\sigma(i)}-l_{\sigma(i)}, 0\right\} \\
\text { s.t. } & t_{\sigma(i)}+\delta_{\sigma(i) \sigma(i+1)} \leq t_{\sigma(i+1)} \tag{1.2}\\
1 \leq i<|\sigma|
\end{array}
$$

Some examples

- Four different applications

- E/T scheduling. Optimizing processing dates for a given sequence of visits σ :

$$
\begin{array}{ll}
\min _{\mathbf{t} \geq \mathbf{0}} & \sum_{i=1}^{|\sigma|} \alpha_{i} \max \left\{d_{\sigma(i)}-t_{\sigma(i)}, 0\right\}+\sum_{i=1}^{|\sigma|} \beta_{i} \max \left\{t_{\sigma(i)}-d_{\sigma(i)}, 0\right\} \\
\text { s.t. } & t_{\sigma(i)}+p_{\sigma(i)} \leq t_{\sigma(i+1)} \\
1 \leq i<|\sigma| \tag{1.4}
\end{array}
$$

Some examples

- Four different applications

E/T
 scheduling

> ship speed opt.

isotonic regression

- Ship speed optimization. Optimizing leg speeds to visit a sequence of locations σ :

$$
\begin{array}{lll}
\min _{\mathbf{t} \geq \mathbf{0}} & \sum_{i=1}^{|\sigma|-1} d_{\sigma(i) \sigma(i+1)} \hat{c}\left(\frac{d_{\sigma(i) \sigma(i+1)}}{t_{\sigma(i+1)}-t_{\sigma(i)}}\right) & \\
\text { s.t. } & t_{\sigma(i)}+p_{\sigma(i)}+\frac{d_{\sigma(i) \sigma(i+1)}}{v_{\max }} \leq t_{\sigma(i+1)} & 1 \leq i<|\sigma| \\
& r_{\sigma(i)} \leq t_{\sigma(i)} \leq d_{\sigma(i)} & 1 \leq i \leq|\sigma| \tag{1.7}
\end{array}
$$

Some examples

- Four different applications

ship speed opt.

isotonic regression

- Isotonic Regression. Given a vector $\mathbf{N}=\left(N_{1}, \ldots, N_{n}\right)$ of n real numbers, finding a vector of non-decreasing values $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$ as close as possible to \mathbf{N} according to a distance metric:

$$
\begin{align*}
\min _{\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)} & \|\mathbf{t}-\mathbf{N}\| \tag{1.8}\\
\text { s.t. } & t_{i} \leq t_{i+1} \tag{1.9}
\end{align*}
$$

General Timing Problem

- Timing problems:

$$
\begin{array}{lll}
\min _{\mathbf{t} \geq \mathbf{0}} & \sum_{F^{x} \in \mathcal{F}^{\text {Oв, }},} \alpha_{x} \sum_{1 \leq y \leq m_{x}} f_{y}^{x}(\mathbf{t}) & \\
\text { s.t. } & t_{i}+p_{i} \leq t_{i+1} & 1 \leq i<n \\
& f_{y}^{x}(\mathbf{t}) \leq 0 & F^{x} \in \mathcal{F}^{\mathrm{CONS}}, 1 \leq y \leq m_{x} \tag{1.12}
\end{array}
$$

- Continuous variables t_{i} following a total order.
- Additional features characterized by functions $f_{y}^{x}(\mathbf{t})$ for $y \in\left\{1, \ldots, m_{x}\right\}$, either in the objective or as constraints.
- Many names in the literature: scheduling, timing, projection onto order simplexes, optimal service time problem...

Features

- Rich vehicle routing problems can involve various timing features

Symbol	Parameters	Char. functions	ξ	Most frequent roles
W	Weights w_{i}	$f_{i}(\mathbf{t})=w_{i} t_{i}$	1	Weighted execution dates
D	Deadlines d_{i}	$f_{i}(\mathbf{t})=\left(t_{i}-d_{i}\right)^{+}$	1	Deadline constraints, tardiness
R	Release dates r_{i}	$f_{i}(\mathbf{t})=\left(r_{i}-t_{i}\right)^{+}$	1	Release-date constraints, earliness.
TW	Time windows $T W_{i}=\left[r_{i}, d_{i}\right]$	$\begin{aligned} f_{i}(\mathbf{t})= & \left(t_{i}-d_{i}\right)^{+} \\ & +\left(r_{i}-t_{i}\right)^{+} \end{aligned}$	1	Time-window constraints, soft time windows.
MTW	Multiple TW $M T W_{i}=\cup\left[r_{i k}, d_{i k}\right]$	$\begin{aligned} f_{i}(\mathbf{t})= & \min _{k}\left[\left(t_{i}-d_{i k}\right)^{+}\right. \\ & \left.+\left(r_{i k}-t_{i}\right)^{+}\right] \end{aligned}$	1	Multiple time-window constraints
$\sum c_{i}^{\text {cvx }}\left(t_{i}\right)$	Convex $c_{i}^{\text {cvx }}\left(t_{i}\right)$	$f_{i}(\mathbf{t})=c_{i}^{\mathrm{CVX}}\left(t_{i}\right)$	1	Separable convex objectives
$\Sigma c_{i}\left(t_{i}\right)$	General $c_{i}(t)$	$f_{i}(\mathbf{t})=c_{i}\left(t_{i}\right)$	1	Separable objectives, time-dependent activity costs
DUR	Total dur. $\delta_{\text {max }}$	$f(\mathbf{t})=\left(t_{n}-\delta_{\text {max }}-t_{1}\right)^{+}$	2	Duration or overall idle time
NWT	No wait	$f_{i}(\mathbf{t})=\left(t_{i+1}-p_{i}-t_{i}\right)^{+}$	2	No wait constraints, min idle time
$I D L$	Idle time ι_{i}	$f_{i}(\mathbf{t})=\left(t_{i+1}-p_{i}-\iota_{i}-t_{i}\right)^{+}$	2	Limited idle time by activity, min idle time excess
$P(t)$	Time-dependent proc. times $p_{i}\left(t_{i}\right)$	$f_{i}(\mathbf{t})=\left(t_{i}+p_{i}\left(t_{i}\right)-t_{i+1}\right)^{+}$	2	Processing-time constraints, min activities overlap
TL	Time-lags $\delta_{i j}$	$f_{i}(\mathbf{t})=\left(t_{j}-\delta_{i j}-t_{i}\right)^{+}$	2	Min excess with respect to time-lags
$\Sigma c_{i}\left(\Delta t_{i}\right)$	General $c_{i}(t)$	$f_{i}(\mathbf{t})=c_{i}\left(t_{i+1}-t_{i}\right)$	2	Separable functions of durations between successive activities, flex. processing times
$\Sigma c_{i j}\left(t_{i}, t_{j}\right)$	General $c_{i j}\left(t, t^{\prime}\right)$	$f_{i j}(\mathbf{t})=c_{i}\left(t_{i}, t_{j}\right)$	2	Separable objectives or constraints by any pairs of variables

Hierarchy of features

- These features can be classified within a hierarchy (using many-one linear reduction relationships between the associated timing problems)
- Features in the NP-hard area lead to NP-hard timing problems

Feature Dimension

Re-optimization

- Some particular features have been extensively studied in various fields.
- For example for the problem $\left\{\Sigma c_{i}^{\mathrm{cvx}}\left(t_{i}\right) \mid \varnothing\right\} 30$ algorithms from various domains (routing, scheduling, PERT, isotonic regression) were inventoried, based on only three main concepts.
- Key lines of research related to the resolution of series of similar timing problems within neighborhood searches, considering different sequences σ.

$$
\begin{array}{lll}
\min _{\mathbf{t} \geq \mathbf{0}} & \sum_{F^{x} \in \mathcal{F}^{\mathrm{OBS}}} \alpha_{x} \sum_{1 \leq y \leq m_{x}} f_{y}^{x}(\mathbf{t}) & \\
\text { s.t. } & t_{\sigma^{k}(i)}+p_{\sigma^{k}(i), \sigma^{k}(i+1)} \leq t_{\sigma^{k}(i+1)} & 1 \leq i<|\sigma| \\
& f_{y}^{x}(\mathbf{t}) \leq 0 & F^{x} \in \mathcal{F}^{\mathrm{CONS}}, 1 \leq y \leq m_{x}
\end{array}
$$

Contents

(1) Research context

- Timing problems in vehicle routing
- Hierarchy of features
- Re-optimization
(2) Problem statement
- Nested resource allocation problems
- ϵ-approximate solutions
- Existing algorithms
- A proximity theorem
(3) Proposed Methodology
- A new decomposition algorithm
- Convergence and complexity
(4) A remark on the expected number of active constraints
(5) Computational experiments

One particular problem

- Consider one particular timing problem with flexible travel times and deadlines:

$$
\begin{array}{lll}
& \min _{\mathbf{t} \geq \mathbf{0}} \sum_{i=1}^{|\sigma|-1} c_{i}\left(t_{\sigma(i+1)}-t_{\sigma(i)}\right) & \\
\text { s.t. } & t_{\sigma(i)}+p_{\sigma(i)}+\frac{d_{\sigma(i) \sigma(i+1)}}{v_{\max }} \leq t_{\sigma(i+1)} & 1 \leq i<|\sigma| \\
& t_{\sigma(i)} \leq d_{\sigma(i)} & 1 \leq i \leq|\sigma| \\
& t_{\sigma(|\sigma|)}=B & \tag{2.4}
\end{array}
$$

- It is a vehicle speed optimization problem with convex - and possibly heterogeneous - cost/speed functions per leg.
- Direct applications related to:
- Ship speed optimization (Norstad et al., 2011; Hvattum et al., 2013)
- Vehicle routing with flexible travel time or pollution routing (Hashimoto et al., 2006; Bektas and Laporte, 2011)

One particular problem

- Consider one particular timing problem with flexible travel times and deadlines:

$$
\begin{array}{lll}
& \min _{\mathbf{t} \geq \mathbf{0}} \sum_{i=1}^{|\sigma|-1} c_{i}\left(t_{\sigma(i+1)}-t_{\sigma(i)}\right) & \\
\text { s.t. } & t_{\sigma(i)}+p_{\sigma(i)}+\frac{d_{\sigma(i) \sigma(i+1)}}{v_{\max }} \leq t_{\sigma(i+1)} & 1 \leq i<|\sigma| \\
& t_{\sigma(i)} \leq d_{\sigma(i)} & 1 \leq i \leq|\sigma| \\
& t_{\sigma(|\sigma|)}=B & \tag{2.8}
\end{array}
$$

- A quick reformulation
- Waiting times can be modeled by additional activities with null cost
- Change of variables $x_{i}=t_{\sigma(i+1)}-t_{\sigma(i)}-p_{\sigma(i)}-\frac{d_{\sigma(i) \sigma(i+1)}}{v_{m a x}}$
- leads to...

A resource allocation problem

- A resource allocation problem with nested constraints (NESTED)

$$
\begin{array}{rlrl}
\min & & f(\mathbf{x}) & =\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \\
\text { s.t. } & 0 \leq x_{i} \leq d_{i} \\
& & \sum_{k=1}^{s[i]} x_{k} & \leq a_{i} \\
& & \sum_{i=1}^{n} x_{i} & =B \tag{2.12}
\end{array}
$$

- Integer or continuous variables are considered here
- Travel time x_{i} on each leg, subject to a maximum bound d_{i}.
- Deadlines a_{i} on arrival time at some ports.
- Table $s[]$ listing the indices of variables on which deadlines are applied. There may be less deadline constraints m than variables n.
- Final arrival date B.

A resource allocation problem

- Without the nested constraints $(2.16) \Rightarrow$ Standard resource allocation problem (Ibaraki and Katoh, 1988; Patriksson, 2008)

$$
\begin{align*}
\min _{\mathbf{0} \leq \mathbf{x} \leq \mathbf{d}} f(\mathbf{x}) & =\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \tag{2.13}\\
\text { s.t. } \sum_{i=1}^{n} x_{i} & =B \tag{2.14}
\end{align*}
$$

- Interesting applications to search-effort allocation, portfolio selection, energy optimization, sample allocation in stratified sampling, capital budgeting, mass advertising, and matrix balancing, among others.

A resource allocation problem

- Various applications

$$
\begin{array}{rlr}
\min _{\mathbf{0} \leq \mathbf{x} \leq \mathbf{d}} & f(\mathbf{x}) & =\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \\
\text { s.t. } & \sum_{k=1}^{s[i]} x_{k} & \leq a_{i} \\
& \sum_{i=1}^{n} x_{i} & =B \tag{2.17}
\end{array}
$$

- With the nested constraints, additional applications to
- Project crashing (Talbot, 1982)
- Production and resource planning (Bellman et al., 1954; Bellman and Dreyfus, 1962; Veinott, 1964)
- Lot sizing (Tamir, 1980)
- Assortment with downward substitution (Hanssmann, 1957; Sadowski, 1959; Pentico, 2008)
- Telecommunications (Padakandla and Sundaresan, 2009a)

ϵ-approximate solutions

- Computational complexity of algorithms for general non-linear optimization problems \Rightarrow an infinite output size may be needed due to real optimal solutions.
- To circumvent this issue
- Existence of an oracle which returns the value of $f_{i}(x)$ in $O(1)$
- Approximate notion of optimality (Hochbaum and Shanthikumar, 1990):

$$
\begin{aligned}
& \text { a continuous solution } \mathbf{x}^{(\epsilon)} \text { is } \epsilon \text {-accurate iff there exists an optimal } \\
& \text { solution } \mathbf{x}^{*} \text { such that }\left\|\left(\mathbf{x}^{(\epsilon)}-\mathbf{x}^{*}\right)\right\|_{\infty} \leq \epsilon .
\end{aligned}
$$

- Accuracy is defined in the solution space, in contrast with some other approximation approaches which considered objective space (Nemirovsky and Yudin, 1983).

Existing algorithms - VRP or ship routing literature

- Recursive smoothing algorithm (Norstad et al., 2011; Hvattum et al., 2013)
- Applicable only when the cost/speed functions are arc-independent
- This case is strongly polynomial (which even never needs to evaluate the objective function)
- Complexity : $O\left(n^{2}\right)$

Image from R. Kramer, A. Subramanian, T. Vidal, and L. A. F. Cabral. A matheuristic approach for the Pollution-Routing Problem. 2014. arXiv: 1404.4895 v 1

Existing algorithms - VRP or ship routing literature

- And this approach is closely related to the concept of string method (Dantzig 1971 and other earlier contributions)

Image from G. B. Dantzig. A control problem of Bellman. Management Science. 17(9), pp. 542-546, 1971.

Existing algorithms - VRP or ship routing literature

- Dynamic programming approach for the case of piecewise linear and convex functions (Hashimoto et al., 2006)
- Compute recursively the functions $F_{i}(b)$ which evaluate the minimum cost to execute the i first activities $\left(x_{1}, \ldots, x_{i}\right)$ with a resource consumption of b.
- Bi-directional dynamic programming can be used. An efficient way to solve serial problems with different (but similar) sequences, using pre-processing and incremental evaluation of moves.

Existing algorithms - Others

- Dual-inspired methods. Rely on the fact that the continuous resource allocation problem without nested constraints (2.16) can be solved by finding the zero of a single Lagrangian equation:

$$
\begin{align*}
L_{\mathrm{RAP}}^{\prime}(\lambda) & =\sum_{i=v}^{w} \bar{x}_{i}(\lambda)-B=0 \tag{2.18}\\
\text { with } \quad \bar{x}_{i}(\lambda) & ={f^{\prime}-1}_{i}\left(\max \left(f^{\prime}{ }_{i}(0), \min \left(\lambda,{f^{\prime}}_{i}\left(d_{i}\right)\right)\right)\right)
\end{align*}
$$

- Iteratively solving Lagrangian equations and adjusting violated nested constraints by variable setting.
- Padakandla and Sundaresan (2009a): complexity of $O\left(n^{2} \Phi_{\text {RAP }}(n, B)\right)$
- Wang (2014): complexity of $O\left(n^{2} \log n+n \Phi_{\text {RAP }}(n, B)\right)$
- where $\Phi_{\text {Rap }}(n, B)$ is the complexity of solving one RAP with n tasks, e.g., by bisection search.

Existing algorithms - Others

- A greedy method with scaling for NESTED with integer variables (Hochbaum, 1994)
- Greedy algorithms iteratively consider all feasible increments of one resource, and select the least-cost one.
- Convergence guarantee (Federgruen and Groenevelt, 1986) to the optimum of the integer RAP in the presence of polymatroidal constraints.
- Scaling.
- An initial problem is solved with large increments
- The increment size is iteratively divided by two to achieve higher accuracy.
- At each iteration, and for each variable, only one increment from the previous iteration may require to be corrected.
- Complexity of $O\left(n \log n \log \frac{B}{n}\right)$ for NESTED with integer variables

Proximity theorem

- Proximity Theorem (Hochbaum, 1994):

Theorem

For any optimal continuous solution \mathbf{x} of NESTED, there exists an optimal solution \mathbf{z} of the same problem with integer variables, such that $\mathbf{z}-\mathbf{e}<\mathbf{x}<\mathbf{z}+n \mathbf{e}$, and thus $\|\mathbf{z}-\mathbf{x}\|_{\infty} \leq n$. Reversely, for any integer optimal solution \mathbf{z}, there exists an optimal continuous solution such that $\|\mathbf{z}-\mathbf{x}\|_{\infty} \leq n$.

Corollary

To obtain an ϵ-approximate solution of the NESTED problem with continuous variables, it is possible to solve a scaled NESTED problem with integer variables, in which all problem parameters have been multiplied by $\left\lceil\frac{n}{\epsilon}\right\rceil$.

Contents

(1) Research context

- Timing problems in vehicle routing
- Hierarchy of features
- Re-optimization
(2) Problem statement
- Nested resource allocation problems
- ϵ-approximate solutions
- Existing algorithms
- A proximity theorem
(3) Proposed Methodology
- A new decomposition algorithm
- Convergence and complexity

4 A remark on the expected number of active constraints
(5) Computational experiments

Proposed Algorithm

- Simple divide and conquer framework: to solve a $\operatorname{Nested}(v, w)$ subproblem, first solve $\operatorname{Nested}(v, t)$ and $\operatorname{Nested}(t+1, w)$, and use this information to solve more efficiently the original problem.
- But how to use the information from subproblems...

Proposed Algorithm

- First an initialization step and feasibility check, then the main loop of the algorithm is the following:

Algorithm $1 \operatorname{Nested}(v, w)$

```
if \(v=w\) then
    \(\left(x_{s[v-1]+1}, \ldots, x_{s[v]}\right) \leftarrow \operatorname{RAP}(v, v)\)
    else
            Solve Two subproblems:
            \(t \leftarrow\left\lfloor\frac{v+w}{2}\right\rfloor\)
            \(\left(x_{s[v-1]+1}, \ldots, x_{s[t]}\right) \leftarrow \operatorname{Nested}(v, t)\)
            \(\left(x_{s[t]+1}, \ldots, x_{s[w]}\right) \leftarrow \operatorname{Nested}(t+1, w)\)
            Do something to solve the upper level:
            for \(i=s[v-1]+1\) to \(s[t]\) do
        \(\left(\bar{c}_{i}, \bar{d}_{i}\right) \leftarrow\left(0, x_{i}\right)\)
    for \(i=s[t]+1\) to \(s[w]\) do
        \(\left(\bar{c}_{i}, \bar{d}_{i}\right) \leftarrow\left(x_{i}, d_{i}\right)\)
    \(\left(x_{s[v-1]+1}, \ldots, x_{s[w]}\right) \leftarrow \operatorname{RAP}(v, w)\)
```


Proposed Algorithm

- Claim: the algorithm $\operatorname{Nested}(v, w)$ is a valid divide-and-conquer approach which returns the optimal solution of the following model:

$$
\operatorname{Nested}(v, w) \begin{cases}\min \sum_{i=s[v-1]+1}^{s[w]} f_{i}\left(x_{i}\right) & \\ \text { s.t. } \sum_{\substack{s=s[v-1]+1}} x_{k} \leq \bar{a}_{i}-\bar{a}_{v-1} \quad i \in\{v, \ldots, w-1\} \\ \sum_{i=s[v-1]+1}^{s[w]} x_{i}=\bar{a}_{w}-\bar{a}_{v-1} & \\ 0 \leq x_{i} \leq d_{i} & i \in\{s[v-1]+1, \ldots, s[w]\}\end{cases}
$$

Proposed Algorithm

- $\operatorname{Rap}(v, w)$ is a simple resource allocation problem with updated bounds.
$\operatorname{RAP}(v, w)\left\{\begin{aligned} \min & \sum_{i=s[v-1]+1}^{s[w]} f_{i}\left(x_{i}\right) \\ \text { s.t. } & \sum_{i=s[v-1]+1}^{s[w]} x_{i}=\bar{a}_{w}-\bar{a}_{v-1} \\ & \hat{c}_{i} \leq x_{i} \leq \hat{d}_{i}\end{aligned}\right.$

$$
i \in\{s[v-1]+1, \ldots, s[w]\}
$$

- Any classic method can be used to solve this problem.
- Integer variables : $O\left(n \log \frac{B}{n}\right)$ by Frederickson and Johnson (1982)
- Continuous variables : can use bisection search on the Lagrangian dual

Convergence

Theorem

Consider (v, t, w) s.t. $1 \leq v \leq t \leq w \leq m$ and $v<w . \operatorname{Let}\left(x_{s[v-1]+1}^{\downarrow *}, \ldots, x_{s[t]}^{\downarrow *}\right)$ and $\left(x_{s[t]+1}^{\uparrow *}, \ldots, x_{s[w]}^{\uparrow *}\right)$ be optimal integer solutions of $\operatorname{NeSted}(v, t)$ and $\operatorname{Nested}(t+1, w)$, then $\operatorname{Nested}(v, w)$ admits an optimal integer solution $\left(x_{s[v-1]+1}^{* *}, \ldots, x_{s[w]}^{* *}\right)$ such that

$$
\begin{array}{lr}
x_{i}^{* *} \leq x_{i}^{\downarrow *} & i \in\{s[v-1]+1, \ldots, s[t]\} \\
x_{i}^{* *} \geq x_{i}^{\uparrow *} & i \in\{s[t]+1, \ldots, s[w]\} \tag{3.2}
\end{array}
$$

Convergence

Theorem

$\operatorname{Consider}(v, t, w)$ s.t. $1 \leq v \leq t \leq w \leq m$ and $v<w$. Let $\left(x_{s[v-1]+1}^{\downarrow *}, \ldots, x_{s[t]}^{\downarrow *}\right)$ and $\left(x_{s[t]+1}^{\uparrow *}, \ldots, x_{s[w]}^{\uparrow *}\right)$ be optimal integer solutions of $\operatorname{Nested}(v, t)$ and $\operatorname{Nested}(t+1, w)$, then $\operatorname{Nested}(v, w)$ admits an optimal integer solution $\left(x_{s[v-1]+1}^{* *}, \ldots, x_{s[w]}^{* *}\right)$ such that

$$
\begin{array}{lr}
x_{i}^{* *} \leq x_{i}^{\downarrow *} & i \in\{s[v-1]+1, \ldots, s[t]\} \\
x_{i}^{* *} \geq x_{i}^{\uparrow *} & i \in\{s[t]+1, \ldots, s[w]\}
\end{array}
$$

- The valid inequalities (3.3-3.4) can be added to the formulation of $\operatorname{Nested}(v, w)$.
- Alone, they guarantee that nested constraints are satisfied \Rightarrow nested constraints can thus be eliminated.
- This leads to a $\operatorname{Rap}(v, w)$ with updated bounds which can be efficiently solved.

Convergence

- Proof of this theorem, in the integer case, using the properties of the greedy algorithm
- For continuous variables, use the proximity theorem of Hochbaum (1994) with a suitable scaling coefficient.
- Alternatively, the KKT conditions can be used for a different proof by contradiction, but need of strong convexity and differentiability (not needed in the first proof).

Complexity

Theorem

The proposed decomposition algorithm for NESTED with integer variables works with a complexity of $O\left(n \log m \log \frac{B}{n}\right)$.

- In the continuous case, an ϵ-approximate solution is obtained in $O\left(n \log m \log \frac{B}{\epsilon}\right)$ operations
- For quadratic NESTED, an overall complexity of $O(n \log m)$ is achieved, using Brucker (1984) or Maculan et al. (2003) for the quadratic RAP sub-problems

Contents

(1) Research context

- Timing problems in vehicle routing
- Hierarchy of features
- Re-optimization
(2) Problem statement
- Nested resource allocation problems
- ϵ-approximate solutions
- Existing algorithms
- A proximity theorem
(3) Proposed Methodology
- A new decomposition algorithm
- Convergence and complexity
(4) A remark on the expected number of active constraints
(5) Computational experiments

A remark on the expected number of active constraints

- Assume random-generated problem instances such that:
- $d_{i}=+\infty$;
- functions f_{i} strictly convex and differentiable, $f_{i}(x)=\gamma_{i} h\left(x / \gamma_{i}\right)$
- Define $\Gamma_{i}=\sum_{k=1}^{i} \gamma_{k}$ for $i \in\{0, \ldots, n\}$.
- We can show that solving the KKT conditions of NESTED under these assumptions is equivalent to computing the convex hull of the set of points \mathcal{P} such that

$$
\begin{equation*}
\mathcal{P}=\left\{\left(\Gamma_{s[j]}, a_{j}\right) \mid j \in\{0, \ldots, m\}\right\} \tag{4.1}
\end{equation*}
$$

A remark on the expected number of active constraints

A remark on the expected number of active constraints

- Assume is addition that
- $\alpha_{i}=a_{i+1}-a_{i}$ are i.i.d. random variables;
- γ_{i} are i.i.d. random variables independent from the α_{i} 's
- and the vectors $\left(\gamma_{i}, \alpha_{i}\right)$ are non-colinear.
- Then the expected number of points on the convex hull grows as $O(\log m)($ Baxter, 1961). Equivalently, there are O(log m) expected active nested constraints in the solution.
- This has a large practical impact when the complexity of the method depends on the number of active constraints

Contents

(1) Research context

- Timing problems in vehicle routing
- Hierarchy of features
- Re-optimization
(2) Problem statement
- Nested resource allocation problems
- ϵ-approximate solutions
- Existing algorithms
- A proximity theorem
(3) Proposed Methodology
- A new decomposition algorithm
- Convergence and complexity
(4) A remark on the expected number of active constraints
(5) Computational experiments

Metho 1

- To assess the practical performance of the proposed algorithm, we implemented it as well as the three other methods.
- PS09 : dual algorithm of Padakandla and Sundaresan (2009b);
- W14 : dual algorithm of Wang (2014);
- H94 : scaled greedy algorithm of Hochbaum (1994);
- MOSEK : interior point method of MOSEK (Andersen et al., 2003, for conic quadratic opt.);
- THIS : proposed decomposition method.
- In these tests, we rely on a simple bisection search on the Lagrangian equation to solve the RAP subproblem.

Metho 1

- Each algorithm is tested on randomly-generated instances of NESTED problems (100 or 10 per type and size) with three families of objective functions.

$$
\begin{array}{rlr}
{[\mathrm{F}]} & f_{i}(x)=\frac{x^{4}}{4}+p_{i} x & x \in[0,1] \\
\text { [Crashing] } & f_{i}(x)=k_{i}+\frac{p_{i}}{x} & x \in\left[c_{i}, d_{i}\right] \\
\text { [FuelOpt] } & f_{i}(x)=p_{i} \times c_{i} \times\left(\frac{c_{i}}{x}\right)^{3} & x \in\left[c_{i}, d_{i}\right] \tag{5.3}
\end{array}
$$

- Size of instances ranges from $n=10$ to $1,000,000$.
- Accuracy of $\epsilon=10^{-8}$
- Coded in C++
- Tests conducted on a Xeon 3.07 GHz CPU

Results $m=n$

Instance	n	nb Active	PS09	W14	Time (s) H94	MOSEK	THIS
[F]	10	1.15	8.86×10^{-5}	8.06×10^{-5}	6.18×10^{-5}	8.73×10^{-3}	1.85×10^{-5}
	10^{2}	1.04	7.96×10^{-3}	7.03×10^{-3}	6.74×10^{-4}	2.03×10^{-2}	1.69×10^{-4}
	10^{4}	1.15	1.06×10^{2}	8.72×10^{1}	1.46×10^{-1}	-	2.23×10^{-2}
	10^{6}	1.10	-	-	4.42×10^{1}	-	4.36
[F-Uniform]	10	2.92	1.03×10^{-4}	4.57×10^{-5}	5.86×10^{-5}	8.76×10^{-3}	2.62×10^{-5}
	10^{2}	5.06	1.37×10^{-2}	1.61×10^{-3}	7.42×10^{-4}	2.14×10^{-2}	4.97×10^{-4}
	10^{4}	9.99	-	6.08	1.67×10^{-1}	-	1.31×10^{-1}
	10^{6}	14.50	-	-	7.06×10^{1}	-	4.62×10^{1}
[F-Active]	10	3.67	1.19×10^{-4}	3.94×10^{-5}	5.76×10^{-5}	8.71×10^{-3}	2.88×10^{-5}
	10^{2}	10.00	2.28×10^{-2}	9.65×10^{-4}	7.50×10^{-4}	2.18×10^{-2}	4.69×10^{-4}
	10^{4}	50.75	-	2.31	1.62×10^{-1}	-	9.95×10^{-2}
	10^{6}	280.30	-	-	5.65×10^{1}	-	2.21×10^{1}
[Crashing]	10	6.44	4.49×10^{-5}	1.81×10^{-5}	5.02×10^{-5}	9.46×10^{-3}	8×10^{-6}
	10^{2}	24.61	6.03×10^{-3}	7.05×10^{-4}	6.80×10^{-4}	5.95×10^{-2}	1.25×10^{-4}
	10^{4}	46.90	2.50×10^{2}	2.85	1.50×10^{-1}	-	4.93×10^{-2}
	10^{6}	88.30	-	-	6.02×10^{1}	-	2.35×10^{1}
[FuelOpt]	10	2.93	8.46×10^{-5}	3.17×10^{-5}	6.62×10^{-5}	8.74×10^{-3}	2.20×10^{-5}
	10^{2}	5.31	1.22×10^{-2}	1.28×10^{-3}	7.98×10^{-4}	1.99×10^{-2}	4.21×10^{-4}
	10^{4}	9.53	2.43×10^{2}	4.81	1.95×10^{-1}	-	1.02×10^{-1}
	10^{6}	12.80	-	-	8.54×10^{1}	-	2.99×10^{1}

Results $m=n$

- Experiments with $m=n$

Figure: CPU Time(s) as a function of $n \in\left\{10, \ldots, 10^{6}\right\} . m=n$. Logarithmic representation

Results $m=n$

- Experiments with $m=n$

Figure: CPU Time(s) as a function of $n \in\left\{10, \ldots, 10^{6}\right\} . m=n$. Logarithmic representation

Results $m<n$

- Experiments with varying values of $m, m<n$.

Figure : CPU Time(s) as a function of $m . n \in\{5000,1000000\}$. Logarithmic representation

Results $m<n$

- Experiments with varying values of $m, m<n$.

Figure : CPU Time(s) as a function of $m . n \in\{5000,1000000\}$. Logarithmic representation

Results $m<n$

- Experiments with varying values of $m, m<n$.

Figure : CPU Time(s) as a function of $m . n \in\{5000,1000000\}$. Logarithmic representation

Conclusions

- Investigate a particular case of timing problem with flexible travel times, equivalent to a nested resource allocation problem.
- Highlighted a rich variety of applications
- Interesting geometrical properties
- A new polynomial algorithm
- matching the state-of-the-art complexity (Hochbaum, 1994) when $m=n$
- and improving when $\log m=o(\log n)$
- Different concepts based on monotonicity properties
- Extensive experimental analyses

Perspectives

- Resolution of series of problems with different permutations of activities
- Identifying an even richer set of related problems, models and applications
- Further generalizations

Thank you

THANK YOU FOR YOUR ATTENTION!

- For further reading:
- T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A Unifying View on Timing Problems and Algorithms. Submitted \& revised to Networks. Tech. Rep. CIRRELT 2011-43.
- T. Vidal, P. Jaillet, and N. Maculan, A decomposition algorithm for nested resource allocation problems. 2014. arXiv:1404.6694v1.
- http://w1.cirrelt.ca/~vidalt/

Bibliography I

Andersen, E.D., C. Roos, T. Terlaky. 2003. On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming 95(2) 249-277.
Baxter, G. 1961. A Combinatorial Lemma for Complex Numbers. The Annals of Mathematical Statistics 32(3) 901-904.
Bektas, T., G. Laporte. 2011. The pollution-routing problem. Transportation Research Part B: Methodological 45(8) 1232-1250.
Bellman, R., I. Glicksberg, O. Gross. 1954. The theory of dynamic programming as applied to a smoothing problem. Journal of the Society for Industrial and Applied Mathematics 2(2) 82-88.
Bellman, R.E., S.E. Dreyfus. 1962. Applied dynamic programming. Princeton University Press, Princeton, NJ.
Brucker, P. 1984. An O(n) algorithm for quadratic knapsack problems. Operations Research Letters 3(3) 163-166.
Dantzig, G.B. 1971. A control problem of Bellman. Management Science 17(9) 542-546.
Federgruen, A., H. Groenevelt. 1986. The greedy procedure for resource allocation problems: Necessary and sufficient conditions for optimality. Operations Research 34(6) 909-918.
Frederickson, G.N., D.B. Johnson. 1982. The complexity of selection and ranking in X + Y and matrices with sorted columns. Journal of Computer and System Sciences 24(2) 197-208.

Bibliography II

Hanssmann, F. 1957. Determination of optimal capacities of service for facilities with a linear measure of inefficiency. Operations Research 5(5) 713-717.
Hashimoto, H., T. Ibaraki, S. Imahori, M. Yagiura. 2006. The vehicle routing problem with flexible time windows and traveling times. Discrete Applied Mathematics 154(16) 2271-2290.

Hochbaum, D.S. 1994. Lower and upper bounds for the allocation problem and other nonlinear optimization problems. Mathematics of Operations Research 19(2) 390-409.
Hochbaum, D.S., J.G. Shanthikumar. 1990. Convex separable optimization is not much harder than linear optimization. Journal of the ACM (JACM) 37(4) 843-862.
Hvattum, L.M., I. Norstad, K. Fagerholt, G. Laporte. 2013. Analysis of an exact algorithm for the vessel speed optimization problem. Networks 62(2) 132-135.
Ibaraki, T., N. Katoh. 1988. Resource allocation problems: algorithmic approaches. MIT Press, Boston, MA.
Maculan, N., C.P. Santiago, E.M. Macambira, M.H.C. Jardim. 2003. An O(n) algorithm for projecting a vector on the intersection of a hyperplane and a box in $R \$ \wedge\{n 1,2\} \$$. Journal of optimization theory and applications 117(3) 553-574.
Nemirovsky, A.S., D.B. Yudin. 1983. Problem complexity and method efficiency in optimization. Wiley, New York.
Norstad, I., K. Fagerholt, G. Laporte. 2011. Tramp ship routing and scheduling with speed optimization. Transportation Research Part C: Emerging Technologies 19(5) 853-865.

Bibliography III

Padakandla, A., R. Sundaresan. 2009a. Power minimization for CDMA under colored noise. IEEE Transactions on Communications 57(10) 3103-3112.
Padakandla, A., R. Sundaresan. 2009b. Separable convex optimization problems with linear ascending constraints. SIAM Journal on Optimization 20(3) 1185-1204.
Patriksson, M. 2008. A survey on the continuous nonlinear resource allocation problem. European Journal of Operational Research 185(1) 1-46.
Pentico, D.W. 2008. The assortment problem: A survey. European Journal of Operational Research 190(2) 295-309.
Sadowski, W. 1959. A few remarks on the assortment problem. Management Science 6(1) 13-24.
Talbot, F.B. 1982. Resource-constrained project scheduling with time-resource tradeoffs: the nonpreemptive case. Management Science 28(10) 1197-1210.
Tamir, A. 1980. Efficient algorithms for a selection problem with nested constraints and its application to a production-sales planning model. SIAM Journal on Control and Optimization 18(3) 282-287.
Veinott, A.F. 1964. Production planning with convex costs: A parametric study. Management Science 10(3) 441-460.
Wang, Z. 2014. On Solving Convex Optimization Problems with Linear Ascending Constraints. Tech. rep., arXiv:1212.4701v2.

