A new polynomial algorithm for nested resource allocation, speed optimization and other related problems

Thibaut VIDAL ^{1,2}, Patrick JAILLET ¹, Nelson MACULAN ³

MIT – Massachusetts Institute of Technology, USA
 PUC-Rio – Pontifical Catholic University of Rio de Janeiro, Brazil
 COPPE – Federal University of Rio de Janeiro, Brazil

ROUTE 2014 June 1- 4^{TH} , 2014

Contents

- Research context
 - Timing problems in vehicle routing
 - Hierarchy of features
 - Re-optimization
- 2 Problem statement
 - Nested resource allocation problems
 - ϵ -approximate solutions
 - Existing algorithms
 - A proximity theorem
- 3 Proposed Methodology
 - A new decomposition algorithm
 - Convergence and complexity
- 4 A remark on the expected number of active constraints
- **5** Computational experiments

Contents

- Research context
 - Timing problems in vehicle routing
 - Hierarchy of features
 - Re-optimization
- 2 Problem statement
 - Nested resource allocation problems
 - ϵ -approximate solutions
 - Existing algorithms
 - A proximity theorem
- 3 Proposed Methodology
 - A new decomposition algorithm
 - Convergence and complexity
- 4 A remark on the expected number of active constraints
- 5 Computational experiments

Timing problems in vehicle routing

- General effort dedicated to better address rich vehicle routing problems involving many side constraints and attributes
- Observation: many rich VRPs are hard because of their time features: (single, soft, or multiple) time windows, time-dependent, flexible or stochastic travel times, various time-dependent costs, break scheduling...
- Timing subproblems: similar formulations in various domains: VRP, scheduling, PERT, resource allocation, isotone regression, telecommunications...
- Cross-domain analysis of timing problems and algorithms:
 - ► T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A Unifying View on Timing Problems and Algorithms. Submitted & revised to Networks. Tech. Rep. CIRRELT 2011-43.

• Four different applications

E/T scheduling

ship speed opt.

isotonic regression

• VRP with soft time windows. Optimizing arrival times for a given sequence of visits σ :

$$\min_{\mathbf{t} \geq \mathbf{0}} \ \alpha \sum_{i=1}^{|\sigma|} \max\{e_{\sigma(i)} - t_{\sigma(i)}, 0\} + \beta \sum_{i=1}^{|\sigma|} \max\{t_{\sigma(i)} - t_{\sigma(i)}, 0\}$$
 (1.1)

s.t.
$$t_{\sigma(i)} + \delta_{\sigma(i)\sigma(i+1)} \le t_{\sigma(i+1)}$$

$$1 \le i < |\sigma| \tag{1.2}$$

• Four different applications

E/T scheduling

ship speed opt.

isotonic regression

• **E/T scheduling**. Optimizing processing dates for a given sequence of visits σ :

$$\min_{\mathbf{t} \geq \mathbf{0}} \sum_{i=1}^{|\sigma|} \alpha_i \max\{d_{\sigma(i)} - t_{\sigma(i)}, 0\} + \sum_{i=1}^{|\sigma|} \beta_i \max\{t_{\sigma(i)} - d_{\sigma(i)}, 0\}$$
 (1.3)

s.t.
$$t_{\sigma(i)} + p_{\sigma(i)} \le t_{\sigma(i+1)}$$

$$1 \le i < |\sigma| \tag{1.4}$$

• Four different applications

VRPTW

E/T scheduling

ship speed opt.

isotonic regression

• Ship speed optimization. Optimizing leg speeds to visit a sequence of locations σ :

$$\min_{\mathbf{t} \ge \mathbf{0}} \sum_{i=1}^{|\sigma|-1} d_{\sigma(i)\sigma(i+1)} \hat{c} \left(\frac{d_{\sigma(i)\sigma(i+1)}}{t_{\sigma(i+1)} - t_{\sigma(i)}} \right) \tag{1.5}$$

s.t.
$$t_{\sigma(i)} + p_{\sigma(i)} + \frac{d_{\sigma(i)\sigma(i+1)}}{v_{max}} \le t_{\sigma(i+1)}$$

$$1 \le i < |\sigma|$$

$$i < |\sigma|$$
 (1.6)

$$r_{\sigma(i)} \leq t_{\sigma(i)} \leq d_{\sigma(i)}$$

$$1 \le i \le |\sigma| \tag{1.7}$$

• Four different applications

E/T scheduling

ship speed opt.

isotonic regression

• Isotonic Regression. Given a vector $\mathbf{N} = (N_1, \dots, N_n)$ of n real numbers, finding a vector of non-decreasing values $\mathbf{t} = (t_1, \dots, t_n)$ as close as possible to \mathbf{N} according to a distance metric:

$$\min_{\mathbf{t}=(t_1,\dots,t_n)} \|\mathbf{t} - \mathbf{N}\| \tag{1.8}$$

s.t.
$$t_i \leq t_{i+1}$$

$$1 \le i < n$$

General Timing Problem

• Timing problems:

$$\min_{\mathbf{t} \ge \mathbf{0}} \sum_{F^x \in \mathcal{F}^{\text{OBJ}}} \alpha_x \sum_{1 \le y \le m_x} f_y^x(\mathbf{t}) \tag{1.10}$$

$$s.t. \quad t_i + p_i \le t_{i+1} \qquad 1 \le i < n \tag{1.11}$$

$$f_y^x(\mathbf{t}) \le 0$$
 $F^x \in \mathcal{F}^{\text{CONS}}, \ 1 \le y \le m_x$ (1.12)

- Continuous variables t_i following a **total order**.
- Additional features characterized by functions $f_y^x(\mathbf{t})$ for $y \in \{1, \dots, m_x\}$, either in the objective or as constraints.
- Many names in the literature: scheduling, timing, projection onto order simplexes, optimal service time problem...

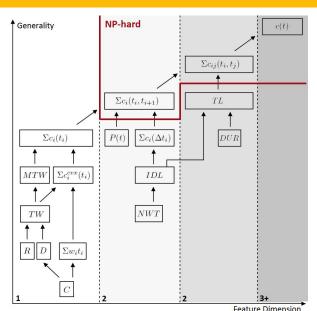
Features

• Rich vehicle routing problems can involve various timing features

$\begin{array}{ c c c c c } \hline W & Weights w_i & $f_i(\mathbf{t}) = w_i t_i$ \\ D & Deadlines d_i & $f_i(\mathbf{t}) = (t_i - d_i)^+$ \\ R & Release dates r_i & $f_i(\mathbf{t}) = (r_i - t_i)^+$ \\ Time windows & $f_i(\mathbf{t}) = (r_i - d_i)^+$ \\ TW & Time windows & $f_i(\mathbf{t}) = (t_i - d_i)^+$ \\ TW_i = [r_i, d_i] & +(r_i - t_i)^+$ \\ MU & Multiple TW & $f_i(\mathbf{t}) = \min_i [(t_i - d_{ik})^+$ \\ MTW_i = \cup [r_{ik}, d_{ik}] & +(r_{ik} - t_i)^+$ \\ +(r_{ik} - t_i)^+$ \\ Sc_i^{\text{CVX}}(t_i) & \text{General $c_i(t)$} & f_i(\mathbf{t}) = c_i^{\text{CVX}}(t_i) & 1 \\ DUR & Total dur. δ_{max} & $f(\mathbf{t}) = (t_n - \delta_{max} - t_1)^+$ \\ IDL & Idle time ι_i & $f_i(\mathbf{t}) = (t_{i+1} - p_i - t_i)^+$ \\ IDL & Time-dependent & $f_i(\mathbf{t}) = (t_{i+1} - p_i - t_i - t_i)^+$ \\ P(t) & Time-dependent & $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_j - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $f_i(\mathbf{t}) = (t_i - \delta_{ij} - t_i)^+$ \\ TL & Time-dependent & $t_i - t_i - t_i - t_i - t_i - t_i - t_i - $	Symbol	Parameters	Char. functions	ξ	Most frequent roles
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W	Weights w_i	$f_i(\mathbf{t}) = w_i t_i$	1	Weighted execution dates
$TW \qquad \text{Time windows} \qquad f_i(\mathbf{t}) = (t_i - d_i)^+ \\ TW_i = [r_i, d_i] \qquad +(r_i - t_i)^+ \\ MUtiple TW \qquad f_i(\mathbf{t}) = \min_{i} [(t_i - d_{ik})^+ \\ +(r_{ik} - t_i)^+] \qquad +(r_{ik} - t_i)^+] \qquad \text{Soft time windows}.$ $\Sigma c_i^{\text{CVX}}(t_i) \qquad \text{Convec } c_i^{\text{CVX}}(t_i) \qquad f_i(\mathbf{t}) = c_i^{\text{CVX}}(t_i) \qquad 1 \\ \Sigma c_i(t_i) \qquad \text{General } c_i(t) \qquad f_i(\mathbf{t}) = c_i^{\text{CVX}}(t_i) \qquad 1 \\ \text{Separable objectives} \qquad Separable obje$	D	Deadlines d_i	$f_i(\mathbf{t}) = (t_i - d_i)^+$	1	Deadline constraints, tardiness
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R	Release dates r_i	$f_i(\mathbf{t}) = (r_i - t_i)^+$	1	Release-date constraints, earliness.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TW	Time windows	$f_i(\mathbf{t}) = (t_i - d_i)^+$	1	Time-window constraints,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$TW_i = [r_i, d_i]$	$+(r_i-t_i)^+$		soft time windows.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MTW	Multiple TW	$f_i(\mathbf{t}) = \min [(t_i - d_{ik})^+$	1	Multiple time-window constraints
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$MTW_i = \cup [r_{ik}, d_{ik}]$	κ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sum c_i^{\text{CVX}}(t_i)$	Convex $c_i^{CVX}(t_i)$	$f_i(\mathbf{t}) = c_i^{\text{CVX}}(t_i)$	1	Separable convex objectives
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sum c_i(t_i)$	General $c_i(t)$	$f_i(\mathbf{t}) = c_i(t_i)$	1	Separable objectives,
NWTNo wait $f_i(\mathbf{t}) = (t_{i+1} - p_i - t_i)^+$ 2No wait constraints, min idle timeIDLIdle time ι_i $f_i(\mathbf{t}) = (t_{i+1} - p_i - \iota_i)^+$ 2No wait constraints, min idle timeP(t)Time-dependent proc. times $p_i(t_i)$ $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ 2Processing-time constraints, min activities overlapTLTime-lags δ_{ij} $f_i(\mathbf{t}) = (t_j - \delta_{ij} - t_i)^+$ 2Min excess with respect to time-lags $\Sigma c_i(\Delta t_i)$ General $c_i(t)$ $f_i(\mathbf{t}) = c_i(t_{i+1} - t_i)$ 2Separable functions of durations between successive activities, flex. $\Sigma c_{ij}(t_i, t_j)$ General $c_{ij}(t, t')$ $f_{ij}(\mathbf{t}) = c_i(t_i, t_j)$ 2Separable objectives or constraints					time-dependent activity costs
IDL Idle time ι_i $f_i(\mathbf{t}) = (t_{i+1} - p_i - \iota_i - t_i)^+$ 2 Limited idle time by activity, min idle time excess $P(t)$ Time-dependent proc. times $p_i(t_i)$ $f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$ 2 Processing-time constraints, min activities overlap $\Sigma c_i(\Delta t_i)$ General $c_i(t)$ $f_i(\mathbf{t}) = (t_j - \delta_{ij} - t_i)^+$ 2 Min excess with respect to time-lags Separable functions of durations between successive activities, flex. $\Sigma c_{ij}(t_i,t_j)$ General $c_{ij}(t,t')$ $f_{ij}(\mathbf{t}) = c_i(t_i,t_j)$ 2 Separable objectives or constraints	DUR	Total dur. δ_{max}	$f(\mathbf{t}) = (t_n - \delta_{max} - t_1)^+$	2	Duration or overall idle time
$P(t) \qquad \text{Time-dependent} \\ \text{proc. times} \ p_i(t_i) \\ \text{TL} \qquad \text{Time-lags} \ \delta_{ij} \qquad f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+ \\ \Sigma c_i(\Delta t_i) \qquad \text{General } c_i(t) \qquad f_i(\mathbf{t}) = (t_j - \delta_{ij} - t_i)^+ \\ \Sigma c_{ij}(t_i, t_j) \qquad \text{General } c_{ij}(t, t') \qquad f_{ij}(\mathbf{t}) = c_i(t_i, t_j) \qquad \text{idle time excess} \\ Processing-time constraints, min activities overlap \\ Min excess with respect to time-lags Separable functions of durations between successive activities, flex. processing times \\ \Sigma c_{ij}(t_i, t_j) \qquad \text{General } c_{ij}(t, t') \qquad f_{ij}(\mathbf{t}) = c_i(t_i, t_j) \qquad 2 \qquad \text{Separable objectives or constraints}$	NWT	No wait	$f_i(\mathbf{t}) = (t_{i+1} - p_i - t_i)^+$	2	No wait constraints, min idle time
$P(t) \qquad \text{Time-dependent} \qquad f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+ \\ TL \qquad \text{Time-lags } \delta_{ij} \qquad f_i(\mathbf{t}) = (t_j - \delta_{ij} - t_i)^+ \\ \Sigma c_i(\Delta t_i) \qquad \text{General } c_i(t) \qquad f_i(\mathbf{t}) = c_i(t_{i+1} - t_i) \qquad 2 \\ \Sigma c_{ij}(t_i, t_j) \qquad \text{General } c_{ij}(t, t') \qquad f_{ij}(\mathbf{t}) = c_i(t_i, t_j) \qquad 2 \\ \text{Separable objectives or constraints} \qquad 2 \\ \Sigma c_{ij}(t_i, t_j) \qquad \text{General } c_{ij}(t, t') \qquad f_{ij}(\mathbf{t}) = c_i(t_i, t_j) \qquad 2 \\ \Sigma c_{ij}(t_i, t_j) \qquad \text{General } c_{ij}(t, t') \qquad f_{ij}(\mathbf{t}) = c_i(t_i, t_j) \qquad 2 \\ \Sigma c_{ij}(t_i, $	IDL	Idle time ι_i	$f_i(\mathbf{t}) = (t_{i+1} - p_i - \iota_i - t_i)^+$	2	Limited idle time by activity, min
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					idle time excess
TL Time-lags δ_{ij} $f_i(\mathbf{t}) = (t_j - \delta_{ij} - t_i)^+$ 2 Min excess with respect to time-lags $\Sigma c_i(\Delta t_i)$ General $c_i(t)$ $f_i(\mathbf{t}) = c_i(t_{i+1} - t_i)$ 2 Separable functions of durations between successive activities, flex. processing times $\Sigma c_{ij}(t_i, t_j)$ General $c_{ij}(t, t')$ $f_{ij}(\mathbf{t}) = c_i(t_i, t_j)$ 2 Separable objectives or constraints	P(t)	Time-dependent	$f_i(\mathbf{t}) = (t_i + p_i(t_i) - t_{i+1})^+$	2	Processing-time constraints, min ac-
$\Sigma c_i(\Delta t_i)$ General $c_i(t)$ $f_i(\mathbf{t}) = c_i(t_{i+1} - t_i)$ 2 Separable functions of durations between successive activities, flex. processing times $\Sigma c_{ij}(t_i, t_j)$ General $c_{ij}(t, t')$ $f_{ij}(\mathbf{t}) = c_i(t_i, t_j)$ 2 Separable objectives or constraints		proc. times $p_i(t_i)$			tivities overlap
between successive activities, flex. processing times $\Sigma c_{ij}(t_i,t_j) \text{General } c_{ij}(t,t') \qquad f_{ij}(\mathbf{t}) = c_i(t_i,t_j) \qquad \qquad 2 \text{Separable objectives or constraints}$	TL	Time-lags δ_{ij}	$f_i(\mathbf{t}) = (t_j - \delta_{ij} - t_i)^+$	2	Min excess with respect to time-lags
$\Sigma c_{ij}(t_i, t_j)$ General $c_{ij}(t, t')$ $f_{ij}(\mathbf{t}) = c_i(t_i, t_j)$ processing times 2 Separable objectives or constraints	$\sum c_i(\Delta t_i)$	General $c_i(t)$	$f_i(\mathbf{t}) = c_i(t_{i+1} - t_i)$	2	Separable functions of durations
$\Sigma c_{ij}(t_i, t_j)$ General $c_{ij}(t, t')$ $f_{ij}(\mathbf{t}) = c_i(t_i, t_j)$ 2 Separable objectives or constraints					between successive activities, flex.
3 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					processing times
Lu anno maine af annial las	$\sum c_{ij}(t_i, t_j)$	General $c_{ij}(t, t')$	$f_{ij}(\mathbf{t}) = c_i(t_i, t_j)$	2	Separable objectives or constraints
by any pairs of variables					by any pairs of variables

Hierarchy of features

- These features can be classified within a hierarchy (using many-one linear reduction relationships between the associated timing problems)
- Features in the NP-hard area lead to NP-hard timing problems



Re-optimization

- Some particular features have been extensively studied in various fields.
 - ▶ For example for the problem $\{\Sigma c_i^{\text{CVX}}(t_i)|\ \emptyset\}$ 30 algorithms from various domains (routing, scheduling, PERT, isotonic regression) were inventoried, based on only three main concepts.
- Key lines of research related to the resolution of series of similar timing problems within neighborhood searches, considering different sequences σ .

$$\min_{\mathbf{t} \ge \mathbf{0}} \quad \sum_{F^x \in \mathcal{F}^{\text{OBJ}}} \alpha_x \sum_{1 \le y \le m_x} f_y^x(\mathbf{t}) \tag{1.13}$$

s.t.
$$t_{\sigma^k(i)} + p_{\sigma^k(i),\sigma^k(i+1)} \le t_{\sigma^k(i+1)} \quad 1 \le i < |\sigma|$$
 (1.14)

$$f_y^x(\mathbf{t}) \le 0$$
 $F^x \in \mathcal{F}^{\text{CONS}}, \ 1 \le y \le m_x \quad (1.15)$

Contents

- Research context
 - Timing problems in vehicle routing
 - Hierarchy of features
 - Re-optimization
- 2 Problem statement
 - Nested resource allocation problems
 - \bullet ϵ -approximate solutions
 - Existing algorithms
 - A proximity theorem
- 3 Proposed Methodology
 - A new decomposition algorithm
 - Convergence and complexity
- 4 A remark on the expected number of active constraints
- 6 Computational experiments

One particular problem

• Consider one particular timing problem with flexible travel times and deadlines:

$$\min_{\mathbf{t} \ge \mathbf{0}} \sum_{i=1}^{|\sigma|-1} c_i (t_{\sigma(i+1)} - t_{\sigma(i)})$$
 (2.1)

s.t.
$$t_{\sigma(i)} + p_{\sigma(i)} + \frac{d_{\sigma(i)\sigma(i+1)}}{v_{max}} \le t_{\sigma(i+1)}$$
 $1 \le i < |\sigma|$ (2.2) $t_{\sigma(i)} \le d_{\sigma(i)}$ $1 \le i \le |\sigma|$ (2.3)

$$t_{\sigma(i)} \le d_{\sigma(i)} \qquad 1 \le i \le |\sigma| \qquad (2.3)$$

$$t_{\sigma(|\sigma|)} = B \tag{2.4}$$

- It is a vehicle speed optimization problem with convex and **possibly heterogeneous** – cost/speed functions per leg.
- Direct applications related to:
 - ► Ship speed optimization (Norstad et al., 2011; Hvattum et al., 2013)
 - ► Vehicle routing with flexible travel time or pollution routing (Hashimoto et al., 2006; Bektas and Laporte, 2011)

One particular problem

 Consider one particular timing problem with flexible travel times and deadlines:

$$\min_{\mathbf{t} \ge \mathbf{0}} \sum_{i=1}^{|\sigma|-1} c_i (t_{\sigma(i+1)} - t_{\sigma(i)})$$
 (2.5)

s.t.
$$t_{\sigma(i)} + p_{\sigma(i)} + \frac{d_{\sigma(i)\sigma(i+1)}}{v_{max}} \le t_{\sigma(i+1)}$$
 $1 \le i < |\sigma|$ (2.6)

$$t_{\sigma(i)} \le d_{\sigma(i)} \qquad 1 \le i \le |\sigma| \qquad (2.7)$$

$$t_{\sigma(|\sigma|)} = B \tag{2.8}$$

- A quick reformulation
 - ▶ Waiting times can be modeled by additional activities with null cost
 - Change of variables $x_i = t_{\sigma(i+1)} t_{\sigma(i)} p_{\sigma(i)} \frac{d_{\sigma(i)\sigma(i+1)}}{r}$
 - ▶ leads to...

A resource allocation problem

• A resource allocation problem with nested constraints (NESTED)

$$\min \quad f(\mathbf{x}) = \sum_{i=1}^{n} f_i(x_i) \tag{2.9}$$

s.t.
$$0 \le x_i \le d_i$$
 $i \in \{1, ..., n\}$ (2.10)

$$\sum_{k=1}^{s[i]} x_k \le a_i \qquad i \in \{1, \dots, m-1\}$$
 (2.11)

$$\sum_{i=1}^{n} x_i = B \tag{2.12}$$

- ▶ Integer or continuous variables are considered here
- ▶ Travel time x_i on each leg, subject to a maximum bound d_i .
- ▶ Deadlines a_i on arrival time at some ports.
- ▶ Table s[] listing the indices of variables on which deadlines are applied. There may be less deadline constraints m than variables n.
- ► Final arrival date B.

A resource allocation problem

• Without the nested constraints (2.16) ⇒ Standard resource allocation problem (Ibaraki and Katoh, 1988; Patriksson, 2008)

$$\min_{\mathbf{0} \le \mathbf{x} \le \mathbf{d}} \quad f(\mathbf{x}) = \sum_{i=1}^{n} f_i(x_i)$$
 (2.13)

s.t.
$$\sum_{i=1}^{n} x_i = B$$
 (2.14)

▶ Interesting applications to search-effort allocation, portfolio selection, energy optimization, sample allocation in stratified sampling, capital budgeting, mass advertising, and matrix balancing, among others.

A resource allocation problem

Various applications

$$\min_{\mathbf{0} \le \mathbf{x} \le \mathbf{d}} \quad f(\mathbf{x}) = \sum_{i=1}^{n} f_i(x_i)$$
 (2.15)

s.t.
$$\sum_{k=1}^{s[i]} x_k \le a_i$$
 $i \in \{1, \dots, m-1\}$ (2.16)

$$\sum_{i=1}^{n} x_i = B \tag{2.17}$$

- With the nested constraints, additional applications to
 - ▶ Project crashing (Talbot, 1982)
 - ▶ Production and resource planning (Bellman et al., 1954; Bellman and Dreyfus, 1962; Veinott, 1964)
 - ▶ Lot sizing (Tamir, 1980)
 - ► Assortment with downward substitution (Hanssmann, 1957; Sadowski, 1959; Pentico, 2008)
 - ► Telecommunications (Padakandla and Sundaresan, 2009a)

ϵ -approximate solutions

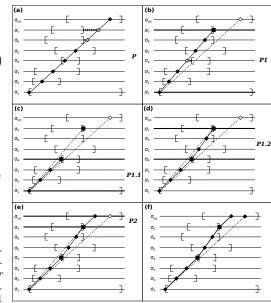
- Computational complexity of algorithms for general non-linear optimization problems ⇒ an infinite output size may be needed due to real optimal solutions.
- To circumvent this issue
 - Existence of an oracle which returns the value of $f_i(x)$ in O(1)
 - ▶ Approximate notion of optimality (Hochbaum and Shanthikumar, 1990):
 - a continuous solution $\mathbf{x}^{(\epsilon)}$ is ϵ -accurate iff there exists an optimal solution \mathbf{x}^* such that $||(\mathbf{x}^{(\epsilon)} \mathbf{x}^*)||_{\infty} \leq \epsilon$.
 - ▶ Accuracy is defined in the solution space, in contrast with some other approximation approaches which considered objective space (Nemirovsky and Yudin, 1983).

Existing algorithms – VRP or ship routing literature

- Recursive smoothing algorithm (Norstad et al., 2011; Hvattum et al., 2013)
 - ► Applicable only when the cost/speed functions are arc-independent
 - ► This case is strongly polynomial (which even never needs to evaluate the objective function)
 - Complexity : $O(n^2)$

Image from R. Kramer, A. Subramanian, T. Vidal, and L. A. F. Cabral. A matheuristic approach for the Pollution-Routing Problem. 2014.

arXiv: 1404 4895v1



Existing algorithms – VRP or ship routing literature

• And this approach is closely related to the concept of *string method* (Dantzig 1971 and other earlier contributions)

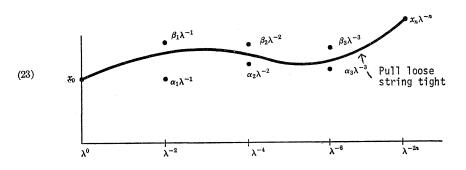


Image from G. B. Dantzig. A control problem of Bellman. Management Science. 17(9), pp. 542-546, 1971.

Existing algorithms – VRP or ship routing literature

- Dynamic programming approach for the case of piecewise linear and convex functions (Hashimoto et al., 2006)
- Compute recursively the functions $F_i(b)$ which evaluate the minimum cost to execute the *i* first activities (x_1, \ldots, x_i) with a resource consumption of *b*.
- Bi-directional dynamic programming can be used. An efficient way to solve serial problems with different (but similar) sequences, using pre-processing and incremental evaluation of moves.

Existing algorithms – Others

>

• Dual-inspired methods. Rely on the fact that the continuous resource allocation problem without nested constraints (2.16) can be solved by finding the zero of a single Lagrangian equation:

$$L'_{\text{RAP}}(\lambda) = \sum_{i=v}^{w} \bar{x}_i(\lambda) - B = 0$$
with $\bar{x}_i(\lambda) = f'_i^{-1} \left(\max(f'_i(0), \min(\lambda, f'_i(d_i))) \right)$
(2.18)

- Iteratively solving Lagrangian equations and adjusting violated nested constraints by variable setting.
 - ▶ Padakandla and Sundaresan (2009a): complexity of $O(n^2\Phi_{RAP}(n, B))$
 - ▶ Wang (2014): complexity of $O(n^2 \log n + n\Phi_{RAP}(n, B))$
 - ▶ where $\Phi_{RAP}(n, B)$ is the complexity of solving one RAP with n tasks, e.g., by bisection search.

Existing algorithms – Others

- A greedy method with scaling for NESTED with integer variables (Hochbaum, 1994)
 - ► **Greedy** algorithms iteratively consider all feasible increments of one resource, and select the least-cost one.
 - ▶ Convergence guarantee (Federgruen and Groenevelt, 1986) to the optimum of the integer RAP in the presence of polymatroidal constraints.

• Scaling.

- ▶ An initial problem is solved with large increments
- ► The increment size is iteratively divided by two to achieve higher accuracy.
- ▶ At each iteration, and for each variable, only one increment from the previous iteration may require to be corrected.
- ► Complexity of $O(n \log n \log \frac{B}{n})$ for NESTED with integer variables

Proximity theorem

• Proximity Theorem (Hochbaum, 1994):

Theorem

For any optimal continuous solution \mathbf{x} of NESTED, there exists an optimal solution \mathbf{z} of the same problem with integer variables, such that $\mathbf{z} - \mathbf{e} < \mathbf{x} < \mathbf{z} + n\mathbf{e}$, and thus $||\mathbf{z} - \mathbf{x}||_{\infty} \le n$. Reversely, for any integer optimal solution \mathbf{z} , there exists an optimal continuous solution such that $||\mathbf{z} - \mathbf{x}||_{\infty} \le n$.

Corollary

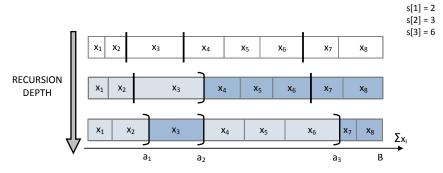
To obtain an ϵ -approximate solution of the NESTED problem with continuous variables, it is possible to solve a scaled NESTED problem with integer variables, in which all problem parameters have been multiplied by $\lceil \frac{n}{\epsilon} \rceil$.

Contents

- Research context
 - Timing problems in vehicle routing
 - Hierarchy of features
 - Re-optimization
- 2 Problem statement
 - Nested resource allocation problems
 - \bullet ϵ -approximate solutions
 - Existing algorithms
 - A proximity theorem
- 3 Proposed Methodology
 - A new decomposition algorithm
 - Convergence and complexity
- 4 A remark on the expected number of active constraints
- 5 Computational experiments

>

- Simple divide and conquer framework: to solve a NESTED(v, w) subproblem, first solve NESTED(v, t) and NESTED(t+1, w), and use this information to solve more efficiently the original problem.
- But how to use the information from subproblems...



• First an initialization step and feasibility check, then the main loop of the algorithm is the following:

Algorithm 1 Nested(v, w)

```
1: if v = w then
           (x_{s\lceil v-1 \rceil+1}, \ldots, x_{s\lceil v \rceil}) \leftarrow \text{Rap}(v, v)
 3:
      else
 4:
            Solve two subproblems:
 5:
            t \leftarrow \lfloor \frac{v+w}{2} \rfloor
 6:
            (x_{s[v-1]+1}, \ldots, x_{s[t]}) \leftarrow \text{Nested}(v, t)
 7:
           (x_{s[t]+1},\ldots,x_{s[w]}) \leftarrow \text{Nested}(t+1,w)
 8:
 9:
            DO SOMETHING TO SOLVE THE UPPER LEVEL:
10:
            for i = s[v-1] + 1 to s[t] do
11:
                (\bar{c}_i, \bar{d}_i) \leftarrow (0, x_i)
12:
            for i = s[t] + 1 to s[w] do
13:
                (\bar{c}_i, \bar{d}_i) \leftarrow (x_i, d_i)
            (x_{s\lceil v-1 \rceil+1}, \ldots, x_{s\lceil w \rceil}) \leftarrow \operatorname{Rap}(v, w)
14:
```

• Claim: the algorithm Nested(v, w) is a valid divide-and-conquer approach which returns the optimal solution of the following model:

• Claim: the algorithm Nested
$$(v,w)$$
 is a valid divide-and-conquer approach which returns the optimal solution of the following model:
$$\begin{cases} \min & \sum_{i=s[v-1]+1}^{s[w]} f_i(x_i) \\ \text{s.t.} & \sum_{k=s[v-1]+1}^{s[i]} x_k \leq \bar{a}_i - \bar{a}_{v-1} & i \in \{v,\dots,w-1\} \\ & \sum_{i=s[v-1]+1}^{s[w]} x_i = \bar{a}_w - \bar{a}_{v-1} \\ & 0 \leq x_i \leq d_i & i \in \{s[v-1]+1,\dots,s[w]\} \end{cases}$$
 > Research context. Problem statement. Methodology. Remark. Experiments. Conclusions. References. 29/5

• RAP(v, w) is a simple resource allocation problem with updated bounds.

$$\operatorname{RAP}(v, w) \begin{cases} \min & \sum_{i=s[v-1]+1}^{s[w]} f_i(x_i) \\ & \text{s.t.} & \sum_{i=s[v-1]+1}^{s[w]} x_i = \bar{a}_w - \bar{a}_{v-1} \\ & \hat{c}_i \leq x_i \leq \hat{d}_i \end{cases} \qquad i \in \{s[v-1]+1, \dots, s[w]\}$$

- Any classic method can be used to solve this problem.
 - ▶ Integer variables : $O(n \log \frac{B}{n})$ by Frederickson and Johnson (1982)
 - ▶ Continuous variables : can use bisection search on the Lagrangian dual

Convergence

Theorem

DEPTH

>

Consider (v, t, w) s.t. $1 \le v \le t \le w \le m$ and v < w. Let $(x_{s[v-1]+1}^{\downarrow *}, \dots, x_{s[t]}^{\downarrow *})$ and $(x_{\mathfrak{s}[t]+1}^{\uparrow *}, \ldots, x_{\mathfrak{s}[w]}^{\uparrow *})$ be optimal integer solutions of Nested(v, t) and Nested(t+1, w), then Nested(v, w) admits an optimal integer solution $(x_{s[v-1]+1}^{**}, \dots, x_{s[w]}^{**})$ such that

$$x_i^{**} \le x_i^{\downarrow *}$$
 $i \in \{s[v-1]+1, \dots, s[t]\}$ (3.1)

$$x_i^{**} \ge x_i^{\uparrow *}$$
 $i \in \{s[t] + 1, \dots, s[w]\}$ (3.2)

Хз X4 **X**5 X7 X۶ RECURSION X₁ X_2 X_3 X_4 X₅ X6 X7 Xx X_1 X_2 X_3 XΔ Xς X6 a_1 a_2 В a₂

s[1] = 2s[2] = 3s[3] = 6

Convergence

Theorem

>

Consider (v,t,w) s.t. $1 \le v \le t \le w \le m$ and v < w. Let $(x_{s[v-1]+1}^{\downarrow *}, \dots, x_{s[t]}^{\downarrow *})$ and $(x_{s[t]+1}^{\uparrow *}, \dots, x_{s[w]}^{\uparrow *})$ be optimal integer solutions of $\operatorname{NESTED}(v,t)$ and $\operatorname{NESTED}(t+1,w)$, then $\operatorname{NESTED}(v,w)$ admits an optimal integer solution $(x_{s[v-1]+1}^{**}, \dots, x_{s[w]}^{**})$ such that

$$x_i^{**} \le x_i^{\downarrow *}$$
 $i \in \{s[v-1]+1,\dots,s[t]\}$ (3.3)

$$x_i^{**} \ge x_i^{\uparrow *}$$
 $i \in \{s[t] + 1, \dots, s[w]\}$ (3.4)

- The valid inequalities (3.3-3.4) can be added to the formulation of Nested (v, w).
- Alone, they guarantee that nested constraints are satisfied
 ⇒ nested constraints can thus be eliminated.
- This leads to a RAP(v, w) with updated bounds which can be efficiently solved.

Convergence

- Proof of this theorem, in the integer case, using the properties of the greedy algorithm
- For continuous variables, use the proximity theorem of Hochbaum (1994) with a suitable scaling coefficient.
- Alternatively, the KKT conditions can be used for a different proof by contradiction, but need of strong convexity and differentiability (not needed in the first proof).

Complexity

Theorem

The proposed decomposition algorithm for NESTED with integer variables works with a complexity of $O(n \log m \log \frac{B}{n})$.

- ▶ In the continuous case, an ε-approximate solution is obtained in $O(n \log m \log \frac{B}{\epsilon})$ operations
- ▶ For quadratic NESTED, an overall complexity of $O(n \log m)$ is achieved, using Brucker (1984) or Maculan et al. (2003) for the quadratic RAP sub-problems

Contents

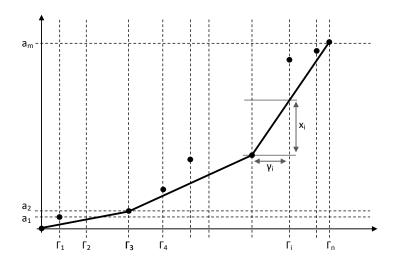
- Research context
 - Timing problems in vehicle routing
 - Hierarchy of features
 - Re-optimization
- 2 Problem statement
 - Nested resource allocation problems
 - \bullet ϵ -approximate solutions
 - Existing algorithms
 - A proximity theorem
- 3 Proposed Methodology
 - A new decomposition algorithm
 - Convergence and complexity
- 4 A remark on the expected number of active constraints
- 5 Computational experiments

A remark on the expected number of active constraints

- Assume random-generated problem instances such that:
 - $d_i = +\infty;$
 - functions f_i strictly convex and differentiable, $f_i(x) = \gamma_i h(x/\gamma_i)$
- Define $\Gamma_i = \sum_{k=1}^i \gamma_k$ for $i \in \{0, \dots, n\}$.
- We can show that solving the KKT conditions of NESTED under these assumptions is equivalent to computing the convex hull of the set of points \mathcal{P} such that

$$\mathcal{P} = \{ (\Gamma_{s[j]}, a_j) \mid j \in \{0, \dots, m\} \}.$$
 (4.1)

A remark on the expected number of active constraints



A remark on the expected number of active constraints

- Assume is addition that
 - $\alpha_i = a_{i+1} a_i$ are i.i.d. random variables;
 - \triangleright γ_i are i.i.d. random variables independent from the α_i 's
 - and the vectors (γ_i, α_i) are non-colinear.
- Then the expected number of points on the convex hull grows as $O(\log m)$ (Baxter, 1961). Equivalently, there are $O(\log m)$ expected active nested constraints in the solution.
- This has a large practical impact when the complexity of the method depends on the number of active constraints

Contents

- Research context
 - Timing problems in vehicle routing
 - Hierarchy of features
 - Re-optimization
- 2 Problem statement
 - Nested resource allocation problems
 - \bullet ϵ -approximate solutions
 - Existing algorithms
 - A proximity theorem
- 3 Proposed Methodology
 - A new decomposition algorithm
 - Convergence and complexity
- 4 A remark on the expected number of active constraints
- **5** Computational experiments

Metho 1

- To assess the practical performance of the proposed algorithm, we implemented it as well as the three other methods.
 - ► PS09: dual algorithm of Padakandla and Sundaresan (2009b);
 - ▶ W14 : dual algorithm of Wang (2014);
 - ► H94 : scaled greedy algorithm of Hochbaum (1994);
 - ► MOSEK: interior point method of MOSEK (Andersen et al., 2003, for conic quadratic opt.);
 - ► THIS : proposed decomposition method.
- In these tests, we rely on a simple bisection search on the Lagrangian equation to solve the RAP subproblem.

Metho 1

• Each algorithm is tested on randomly-generated instances of NESTED problems (100 or 10 per type and size) with three families of objective functions.

[F]
$$f_i(x) = \frac{x^4}{4} + p_i x$$
 $x \in [0, 1]$ (5.1)

[Crashing]
$$f_i(x) = k_i + \frac{p_i}{x} \qquad x \in [c_i, d_i] \qquad (5.2)$$

[FuelOpt]
$$f_i(x) = p_i \times c_i \times \left(\frac{c_i}{x}\right)^3$$
 $x \in [c_i, d_i]$ (5.3)

- ▶ Size of instances ranges from n = 10 to 1,000,000.
- Accuracy of $\epsilon = 10^{-8}$
- ▶ Coded in C++
- ► Tests conducted on a Xeon 3.07 GHz CPU

Results m = n

Instance	n	nb Active	PS09	W14	Time (s) H94	MOSEK	THIS
[F]	10	1.15	8.86×10^{-5}	8.06×10^{-5}	6.18×10^{-5}	8.73×10^{-3}	1.85×10^{-5}
''	10^{2}	1.04	7.96×10^{-3}	7.03×10^{-3}	6.74×10^{-4}	2.03×10^{-2}	1.69×10^{-4}
	10^{4}	1.15	1.06×10^{2}	8.72×10^{1}	1.46×10^{-1}	_	2.23×10^{-2}
	10^{6}	1.10	_	-	4.42×10^{1}	_	4.36
[F-Uniform]	10	2.92	1.03×10^{-4}	4.57×10^{-5}	5.86×10^{-5}	8.76×10^{-3}	2.62×10^{-5}
, ,	10^{2}	5.06	1.37×10^{-2}	1.61×10^{-3}	7.42×10^{-4}	2.14×10^{-2}	4.97×10^{-4}
	10^{4}	9.99	_	6.08	1.67×10^{-1}	_	1.31×10^{-1}
	10^{6}	14.50	-	-	7.06×10^{1}	-	4.62×10^{1}
[F-Active]	10	3.67	1.19×10^{-4}	3.94×10^{-5}	5.76×10^{-5}	8.71×10^{-3}	2.88×10^{-5}
' '	10^{2}	10.00	2.28×10^{-2}	9.65×10^{-4}	7.50×10^{-4}	2.18×10^{-2}	4.69×10^{-4}
	10^{4}	50.75	_	2.31	1.62×10^{-1}	_	9.95×10^{-2}
	10^{6}	280.30	-	-	5.65×10^{1}	-	2.21×10^{1}
[Crashing]	10	6.44	4.49×10^{-5}	1.81×10^{-5}	5.02×10^{-5}	9.46×10^{-3}	8×10^{-6}
'	10^{2}	24.61	6.03×10^{-3}	7.05×10^{-4}	6.80×10^{-4}	5.95×10^{-2}	1.25×10^{-4}
	10^{4}	46.90	2.50×10^{2}	2.85	1.50×10^{-1}	_	4.93×10^{-2}
	10^{6}	88.30	_	_	6.02×10^{1}	_	2.35×10^{1}
[FuelOpt]	10	2.93	8.46×10^{-5}	3.17×10^{-5}	6.62×10^{-5}	8.74×10^{-3}	2.20×10^{-5}
' ' '	10^{2}	5.31	1.22×10^{-2}	1.28×10^{-3}	7.98×10^{-4}	1.99×10^{-2}	4.21×10^{-4}
	10^{4}	9.53	2.43×10^{2}	4.81	1.95×10^{-1}	_	1.02×10^{-1}
	10^{6}	12.80	_	-	8.54×10^{1}	-	$2.99{ imes}10^{1}$

Results m = n

• Experiments with m=n

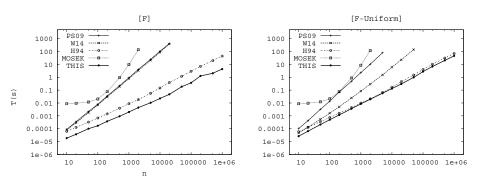


Figure : CPU Time(s) as a function of $n \in \{10, \dots, 10^6\}$. m = n. Logarithmic representation

Results m = n

• Experiments with m=n

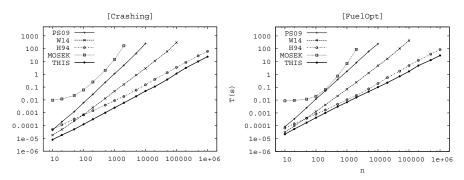


Figure : CPU Time(s) as a function of $n \in \{10, ..., 10^6\}$. m = n. Logarithmic representation

Results m < n

• Experiments with varying values of m, m < n.

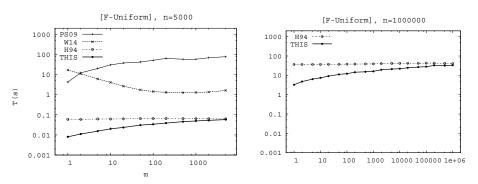


Figure : CPU Time(s) as a function of m. $n \in \{5000, 1000000\}$. Logarithmic representation

Results m < n

• Experiments with varying values of m, m < n.

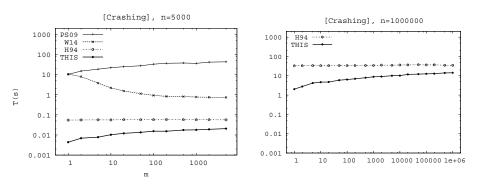


Figure : CPU Time(s) as a function of m. $n \in \{5000, 1000000\}$. Logarithmic representation

Results m < n

• Experiments with varying values of m, m < n.

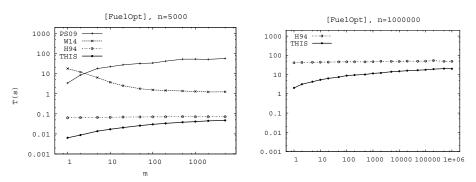


Figure : CPU Time(s) as a function of m. $n \in \{5000, 1000000\}$. Logarithmic representation

Conclusions

- Investigate a particular case of timing problem with flexible travel times, equivalent to a nested resource allocation problem.
- Highlighted a rich variety of applications
- Interesting geometrical properties
- A new polynomial algorithm
 - ▶ matching the state-of-the-art complexity (Hochbaum, 1994) when m = n
 - and improving when $\log m = o(\log n)$
- Different concepts based on monotonicity properties
- Extensive experimental analyses

Perspectives

- Resolution of series of problems with different permutations of activities
- Identifying an even richer set of related problems, models and applications
- Further generalizations

Thank you

THANK YOU FOR YOUR ATTENTION!

- For further reading:
 - ▶ T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A Unifying View on Timing Problems and Algorithms. Submitted & revised to Networks. Tech. Rep. CIRRELT 2011-43.
 - ► T. Vidal, P. Jaillet, and N. Maculan, A decomposition algorithm for nested resource allocation problems. 2014. arXiv:1404.6694v1.
 - ▶ http://w1.cirrelt.ca/~vidalt/

Bibliography I

>

- Andersen, E.D., C. Roos, T. Terlaky. 2003. On implementing a primal-dual interior-point method for conic quadratic optimization. *Mathematical Programming* 95(2) 249–277.
- Baxter, G. 1961. A Combinatorial Lemma for Complex Numbers. The Annals of Mathematical Statistics 32(3) 901–904.
- Bektas, T., G. Laporte. 2011. The pollution-routing problem. Transportation Research Part B: Methodological 45(8) 1232–1250.
- Bellman, R., I. Glicksberg, O. Gross. 1954. The theory of dynamic programming as applied to a smoothing problem. *Journal of the Society for Industrial and Applied Mathematics* **2**(2) 82–88.
- Bellman, R.E., S.E. Dreyfus. 1962. Applied dynamic programming. Princeton University Press, Princeton, NJ.
- Brucker, P. 1984. An O(n) algorithm for quadratic knapsack problems. *Operations Research Letters* **3**(3) 163–166.
- Dantzig, G.B. 1971. A control problem of Bellman. Management Science 17(9) 542–546.
- Federgruen, A., H. Groenevelt. 1986. The greedy procedure for resource allocation problems: Necessary and sufficient conditions for optimality. *Operations Research* **34**(6) 909–918.
- Frederickson, G.N., D.B. Johnson. 1982. The complexity of selection and ranking in X + Y and matrices with sorted columns. *Journal of Computer and System Sciences* **24**(2) 197–208.

Bibliography II

>

- Hanssmann, F. 1957. Determination of optimal capacities of service for facilities with a linear measure of inefficiency. Operations Research 5(5) 713-717.
- Hashimoto, H., T. Ibaraki, S. Imahori, M. Yagiura. 2006. The vehicle routing problem with flexible time windows and traveling times. Discrete Applied Mathematics 154(16) 2271–2290.
- Hochbaum, D.S. 1994. Lower and upper bounds for the allocation problem and other nonlinear optimization problems. Mathematics of Operations Research 19(2) 390–409.
- Hochbaum, D.S., J.G. Shanthikumar. 1990. Convex separable optimization is not much harder than linear optimization. *Journal of the ACM (JACM)* **37**(4) 843–862.
- Hvattum, L.M., I. Norstad, K. Fagerholt, G. Laporte. 2013. Analysis of an exact algorithm for the vessel speed optimization problem. Networks 62(2) 132–135.
- Ibaraki, T., N. Katoh. 1988. Resource allocation problems: algorithmic approaches. MIT Press, Boston, MA.
- Maculan, N., C.P. Santiago, E.M. Macambira, M.H.C. Jardim. 2003. An O(n) algorithm for projecting a vector on the intersection of a hyperplane and a box in $R^{n_1,2}$. *Journal of optimization theory and applications* 117(3) 553–574.
- Nemirovsky, A.S., D.B. Yudin. 1983. Problem complexity and method efficiency in optimization. Wiley, New York.
- Norstad, I., K. Fagerholt, G. Laporte. 2011. Tramp ship routing and scheduling with speed optimization. Transportation Research Part C: Emerging Technologies 19(5) 853–865.

Bibliography III

>

- Padakandla, A., R. Sundaresan. 2009a. Power minimization for CDMA under colored noise. IEEE Transactions on Communications $\bf 57(10)$ 3103–3112.
- Padakandla, A., R. Sundaresan. 2009b. Separable convex optimization problems with linear ascending constraints. SIAM Journal on Optimization 20(3) 1185–1204.
- Patriksson, M. 2008. A survey on the continuous nonlinear resource allocation problem. European Journal of Operational Research 185(1) 1–46.
- Pentico, D.W. 2008. The assortment problem: A survey. European Journal of Operational Research 190(2) 295–309.
- Sadowski, W. 1959. A few remarks on the assortment problem. Management Science $\mathbf{6}(1)$ 13–24.
- Talbot, F.B. 1982. Resource-constrained project scheduling with time-resource tradeoffs: the nonpreemptive case. *Management Science* **28**(10) 1197–1210.
- Tamir, A. 1980. Efficient algorithms for a selection problem with nested constraints and its application to a production-sales planning model. SIAM Journal on Control and Optimization 18(3) 282–287.
- Veinott, A.F. 1964. Production planning with convex costs: A parametric study. Management Science 10(3) 441–460.
- Wang, Z. 2014. On Solving Convex Optimization Problems with Linear Ascending Constraints. Tech. rep., arXiv:1212.4701v2.