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Problem Definition

Data
Ia set of customers, each one with a demand and a service time
Ione depot, the base of the fleet of vehicles
Ia set of replenishment facilities, with a recharge time each
Ia set of vehicles of fixed capacity

Constraints
Ieach customers must be served by exactly one vehicle
Iwhen empty, a vehicle can stop and recharge at a facility
Ia rotation is the sequence of routes of a vehicle
I its rotation must start and end at the depot
I the total duration of its rotation must not exceed a given shift length

Objective function
Find a minimum cost set of routes
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An example of instance and solution

Figure 1: A VRPIRF instance: the depot (red), the facilities (blue), and the customers
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An example of instance and solution

Figure 2: A solution to the previous instance
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Literature Review

Exact methods
IA Branch&Cut on the VRP with satellite facilities ([2])
IA Branch&Price for the Multi-Depot VRP with Inter-Depot Routes ([4])

Heuristics
IA Hybrid Guided Local Search (VNS, Tabu Search) ([1])
IAn Adaptive VNS for the VRP with Intermediate Stops ([5])
IA Tabu Search for the MDVRPI ([3])

Similarities with..
ICollection of waste (see [6], [7])
IVRPIRF belongs to the family of Multi-Depot VRPs (see [10], [11] for

instance)
I it has some elements in common with Multi-Trip VRPs ([8], [9])
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Notation I

Data
Vc = {1, ..., n} i, j ∈ Vc #, set, indexes of clients
Vp = {n + 1, ..., n + f} p ∈ Vp #, set, index of replenishment facilities
K = {1, ..., nK } k ∈ K #, set, index of vehicles

V = {0} ∪ Vc ∪ Vp v ∈ V entire node set (0 = depot node)
A = V × Vc ∪ Vc × V ij ∈ A set of arcs

Q capacity of vehicles
T max duration of a rotation

qi , τi i ∈ Vc demand and service time of clients
τp p ∈ P recharge time at facilities

dij , τij ij ∈ A0 routing cost and travel time of arcs
tij = τi + τij ij ∈ A extended time of arcs (τ0 ≡ 0)
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Notation II

Set notation
S(Vc) collection {S ⊂Vc : 2≤|S|≤|Vc |−2} of customer subsets
δ+(S), δ−(S) cutsets of in- and outgoing arcs of S ⊆ Vc
S1 : S2 cutsets of arcs ij : i ∈ S1, j ∈ S2
S complementary set Vc \ S
A(S) arcs with both endpoint in S ⊆ Vc

Decision variables and compact notation

xk
ij ∈ {0, 1}, k ∈ K , ij ∈ A xk

ij = 1⇔ vehicle k visits node j after node i
yk

p ∈ {0, 1}, k ∈ K , p ∈ Vp yk
p = 1⇔ vehicle k visits facility p at least once

xk (A′), A′ ⊆ A aggregate sum
∑

ij∈A′ xk
ij

Further notation
κ(S) min # of routes to serve clients in S ∈ S(Vc) (solution of BP)
r(S) trivial lower bound d 1

Q
∑

i∈S qie on κ(S)
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A Three-Index Formulation

min
∑

k∈K

∑
ij∈A

dij xk
ij

s.t.
∑
ij∈A

tij xk
ij ≤ T ∀k ∈ K duration

∑
k∈K

xk (δ+(i)) = 1 ∀i ∈ VC client service

xk (δ+(i)) = xk (δ−(i)) ∀i ∈ VC , k ∈ K

xk (0 :Vc) ≤ 1 ∀k ∈ K depot degree

xk (0 :Vc) = xk (Vc :0) ∀k ∈ K

xk (p :Vc) = xk (Vc :p) ∀k ∈ K facility degree∑
k∈K

xk (A(S)) ≤ |S| − κ(S) ∀S ∈ S(Vc) capacity

xk
ip ≤ yk

p ∀i ∈ Vc , k ∈ K , p ∈ VF activity

xk (S :S) ≥ yk
p ∀k ∈ K , p ∈ VF , S ⊆ V \ p connectivity

xk (S :S) ≥ yk
p ∀k ∈ K , p ∈ VF , S ⊆ V \ p∑

k∈K
(xk (δ−(0)) +

∑
p∈Vp

xk (δ−(p))) ≥ κ(Vc) ∀k ∈ K min # vehicles

xk (δ+(i)) ≤ xk (Vc :0) ∀i ∈ Vc , k ∈ K trick
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Replenishment arcs I

(Almost) Back to routes
Iwith replenishment arcs, rotation becomes very similar to a route in classical CVRP
I the depot is the only node with in/outdegree greater than 1
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Figure 3: The same rotation with replenishment arcs (right) and without
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Replenishment arcs II

Replenishment arcs allow to overcome the weakness of three-index model:
Inow we can remove both activity variables y ..
I ..and connectivity constraints

Connection..
we can impose the respect of connection constraints with a simple extension
of classical SECs

(∀S ∈ S(Vc)) x(A0(S)) + w(AP(S)) ≤ |S| − 1

..meets capacity
with no change in the form of capacity constraints

(∀S ∈ S(Vc)) x(A0(S)) ≤ |S| − κ(S)
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Two index variables I

With vehicles
The three-index formulation has some drawbacks:
I symmetry issues
I very scattered fractionary solutions
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Figure 4: A three-index fractionary solution of the previous instance
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Two index variables II

Without vehicles
If we introduce new continuous variables z and new constraints:

(∀i ∈ Vc)
∑

v∈V\i

ziv =
∑

v∈V\i

zvi +
∑

v∈V\i

tiv xiv +
∑

j∈Vc\i

uijwij
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Figure 5: A two-index fractionary solution of the same instance
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Arrival times example
How do arrival times work
In the example below:
I xij = wij = 0 except for x01 = x12 = w23 = x34 = x45 = x50 = 1⇒

zij = 0 except for z01, z12, z23, z34, z45 and z50 (z bounds)

How do z variables track time:
I z01 = t01 (rotation start)
I for i = 1 (time track):∑

v∈V\{1}
z1v = z12 =

∑
v∈V\{1}

zv1 +
∑

v∈V\{1}
t1v x1v +

∑
j∈Vc\{1}

u1j w1j = z01 + t12

I similarly z23 = z12 + u23, z34 = z23 + t34, z45 = z34 + t45 and z50 = z45 + t50
I z50 ≤ T (shift duration)
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5

Figure 6: An instance with f = 1 and n = 5 and a solution with only one rotation.
The vehicle performing it is ensured to be back at the depot within time T
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A Two-Index Formulation I

New variables

xij ∈ {0, 1}, ij ∈ A0 xij = 1⇔ node j follow node i in one same route
wij ∈ {0, 1}, ij ∈ AP wij = 1⇔ vehicle recharges in between clients i , j
zij ∈ R, i, j ∈ V arrival time at node j if its predecessor is node i

Compact notation

x(A′), A′ ⊆ A0 aggregate sum
∑

ij∈A′ xij

w(A′), A′ ⊆ AP aggregate sum
∑

ij∈A′ wij
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A Two-Index Formulation II

Model

min
∑
ij∈A0

dij xij +
∑

ij∈AP

eij wij

s.t. x(δ−0 (0)) + w(AP)) ≥ κ(Vc) min # of routes

x(δ+0 (i))+w(δ+P(i)) = 1 i ∈ Vc client service/1
x(δ−0 (i))+w(δ−P (i)) = 1 i ∈ Vc client service/2
x(δ−0 (0)) = x(δ+0 (0)) ≤ nK depot degree

x(A0(S)) ≤ |S| − κ(S) S ∈ S(Vc) capacity
x(A0(S)) + w(AP(S)) ≤ |S| − 1 S ∈ S(Vc) connection

z0i = t0i x0i i ∈ Vc rotation start
(t0i + tij )xij + (t0i + uij )wij ≤ zij i ∈ Vc , j ∈ Vc \ i z bounds/1
zij ≤ (T − tj0)(xij + wij ) i ∈ Vc , j ∈ Vc \ i z bounds/2
(t0i + ti0)xi0 ≤ zi0 i ∈ Vc z bounds/3
zi0 ≤ Txi0 i ∈ Vc shift duration∑
v∈V\i

ziv =
∑

v∈V\i
zvi +

∑
v∈V\i

tiv xiv +
∑

j∈Vc\i
uij wij i ∈ Vc time track
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Separation of Capacity Constraints I

Rounded Capacity Inequalities
capacity inequalities are separated in the form of rounded capacity
inequalities (RCI) which replaces κ(S) by r(S)

Graph transformation
I separation is performed with J.Lysgaard’s package CVRPSEP (see [12])
ICVRPSEP requires the support graph to be symmetric
Ia transformation of our support graph is therefore necessary
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Separation of Capacity Constraints II

α-Transformation of the graph and Capacity Separation
I the routines are fed with the α-transformation of the graph: (α-separation):

(∀i, j ∈ Vc , i < j) xij |α = xij +xji (∀i ∈ Vc) xi0|α = x0i +xi0 +
∑

j∈Vc\i

(wij +wji)

Ion every set S which RCI is violated of more than a threshold θ we impose:

x(A0(S)) ≤ |S| − r(S) x(A0(S)) + w(AP(S)) ≤ |S| − 1

I if r(S) = 1 the first constraint is not added since redundant
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Separation of Capacity Constraints
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Figure 7: This new solution (left) will not be cut, as it violates neither the capacity
contraint on S nor any other one: α-separation does not detect anything on its
α-transformation (right).
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Separation of Capacity Constraints
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Figure 8: Even if it does not violate the capacity contraint on S, this new solution (left)
would be cut, as α-separation would detect a violation on set S1 (right).
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Separation of Capacity Constraints
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Figure 9: Another solution that would be cut in the following, as it violates the
connection constraint on S imposed as a by-product of α-transformation (even if the
capacity constraint is respected).
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Separation of Connectivity Constraints

β-Transformation of the graph and Non-Connectivity Detection
I solutions respecting added RCIs could be nonconnected (see examples)
I to overcome this, immediately after α-separation, we perform another

separation (β-separation) based on the β-transformation of the graph:

(∀i, j ∈ Vc , i < j) xij |β = xij + xji + wij + wji (∀i ∈ Vc) xi0|β = x0i + xi0

Iβ-separation: a classical maxflow-based procedure to separate SECS
I (∀i ∈ Vc) solve 0−i maxflow problem with x|α as support graph⇒ mincut Si
I if Si has capacity < 1, impose x(A0(Si )) + w(AP(Si )) ≤ |Si | − 1

I connection constraint is replaced by its equivalent if it is the sparsest:

x(δ+0(S)) + w(δ+P(S)) ≥ 1
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Separation of Connectivity Constraints
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Figure 10: This solution (left) does not violate the capacity contraint on S, neither it can
be cut by α-separation (the α-transformation is the same of Figure 7). However,
β-separation will detect a violation on set S2 and the solution will be cut.
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Separation of other Constraints

Multistar inequalities
I these inequalities are originally in the form λx(E(N)) + x(N : S) ≤ γ
IN ⊂ Vc : nucleus, S ⊆ Vc \ N: satellites, λ and γ depend on |N|,|S|.
I separation is performed once again with CVRPSEP package
I cuts need to be adapted to the asymmetric case
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Separation Strategy

Separation Algorithm
Both at root and at each node of the B&B tree (whether its solution is integer
feasible or not) we follow these steps:

LPoptimize

while(true)

perform α-separation
if(there are sets whose capacity cut is violated by more than θα)

add capacity and connection cuts on those sets and LPoptimize
perform β-separation
if(there are sets whose connection cut is violated by more than θβ)

add connection cuts on those sets and LPoptimize
continue

perform β-separation
if(there are sets whose connection cut is violated by more than θβ)

add connection cuts on those sets and LPoptimize
continue

if(current solution is integer feasible) break

perform separation of Multistar inequalities
if(there are cuts which are violated by more than θµ)

add those cuts and LPoptimize
continue

break
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Computational Results

Benchmark Instances
I tests have been conducted on the instances of Crevier et al. (see [3]) and

Tarantilis et al. (see [1])
I instances features range from:

I 48 to 216 customers
I 2 to 7 facilities
I 2 to 8 vehicles

Computational Strategy
Ion smaller instances (48 to 75 customers):

I complete computation with a time limit from 3600s to 5400s on both the root note
computation and the B&B search

I the B&B search has been given the best known solution as initial UB

Ion bigger instances (96+ customers):
I only the root node computation has been conducted, time limit: always 3600s
I the gap with the best known solution is reported
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Computational Results

instance t lim t root tB&C UBw UBb LB %

50c3d2v 3600 49 523 2239 2239 2239.00 0.00
50c3d4v 3600 11 3600 2400 2384 2185.87 8.31
50c3d6v 3600 42 3600 3031 3022 2701.95 10.59
50c5d2v 3600 108 3600 2640 2640 2626.75 0.50
50c5d4v 3600 59 3600 3120 3120 2914.98 6.57
50c5d6v 3600 37 3600 3583 3583 3205.15 10.55
50c7d2v 3600 169 3600 3388 3388 3361.62 0.78
50c7d4v 3600 136 3600 3416 3416 3369.19 1.37
50c7d6v 3600 70 3600 4132 4089 3681.10 9.98

Table 1: Results on Tarantilis instances with 50 customers.
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Computational Results

instance t lim t root tB&C UBw UBb LB %

75c3d2v 5400 1542 5400 2725 2725 2695.33 1.09
75c3d4v 5400 1089 5400 2793 2793 2737.86 1.97
75c3d6v 5400 1017 5400 3502 3502 3179.16 9.22
75c5d2v 5400 1830 5400 3425 3425 3343.64 2.38
75c5d4v 5400 391 5400 3620 3620 3423.63 5.42
75c5d6v 5400 755 5400 4254 4254 3939.69 7.39
75c7d2v 5400 1175 5400 3618 3618 3579.57 1.06
75c7d4v 5400 612 5400 3881 3871 3708.38 4.20
75c7d6v 5400 514 5400 4287 4287 3989.61 6.94

Table 2: Results on Tarantilis instances with 75 customers.
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Computational Results

instance t root UBw LB %

100c3d3v 3600 3179 3101.97 2.42
100c3d5v 1463 3606 3178.38 11.86
100c3d7v 3600 4300 3853.87 10.38
100c5d3v 3600 4110 3998.63 2.71
100c5d5v 259 4466 4087.19 8.48
100c5d7v 3600 5206 4548.10 12.64
100c7d3v 3600 4278 4025.12 5.91
100c7d5v 293 4524 4072.14 9.99
100c7d7v 808 4961 4459.69 10.10

Table 3: Results on Tarantilis instances with 100 customers.
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Computational Results

instance t root UBw LB %

125c4d3v 3600 3995 3876.89 2.96
125c4d5v 3600 4392 3981.17 9.35
125c4d7v 3600 4839 4206.77 13.07
125c6d3v 3600 4142 3999.19 3.45
125c6d5v 3600 4906 4327.09 11.80
125c6d7v 3600 5406 4628.97 14.37
125c8d3v 3600 4632 4386.89 5.29
125c8d5v 3600 5124 4575.70 10.70
125c8d7v 3600 5494 4591.21 16.43

Table 4: Results on Tarantilis instances with 125 customers.
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Computational Results

instance t root UBw LB %

150c4d3v 3600 4134 3860.88 6.61
150c4d5v 3600 4724 3968.24 16.00
150c4d7v 1010 5263 4277.04 18.73
150c6d3v 793 4144 3737.52 9.81
150c6d5v 3600 4967 4354.96 12.32
150c6d7v 3600 5869 4844.69 17.45
150c8d3v 3600 4743 4495.64 5.22
150c8d5v 3600 5205 4599.48 11.63
150c8d7v 3600 5755 5129.98 10.86

Table 5: Results on Tarantilis instances with 150 customers.
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Computational Results

instance t root UBw LB %

175c4d4v 3600 4810 4116.2 14.42
175c4d6v 3600 4940 4117.42 16.65
175c4d8v 1257 6046 4712.33 22.06
175c6d4v 3600 5121 4494.91 12.23
175c6d6v 3600 5527 4653.93 15.80
175c6d8v 3600 6185 5002.54 19.12
175c8d4v 3600 5987 4989.7 16.66
175c8d6v 3600 6090 5066.11 16.81
175c8d8v 3600 7042 5591.82 20.59

Table 6: Results on Tarantilis instances with 175 customers.
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Computational Results

instance |Vc | |P| |K | t lim t root tB&C UBw UB LB %

a1 48 3 6 3600 167 3600 1209 1209 1125.78 6.88
d1 48 4 5 3600 177 3602 1088 1088 1019.04 6.34
g1 72 5 5 5400 3055 5400 1224 1224 1170.50 4.37
j1 72 6 4 5400 842 5400 1161 1161 1105.94 4.74

Table 7: Results on Crevier instances with 48 to 72 customers.
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Computational Results

instance |Vc | |P| |K | t root UBw LB %

b1 96 3 4 3600 1272 1230.76 3.24
e1 96 4 5 810 1357 1330.48 1.95
h1 144 5 4 3600 1871 1515.21 19.02
k1 144 6 4 3600 1660 1562.32 5.88
c1 192 3 5 3600 1987 1714.55 13.71
f1 192 4 4 3600 1678 1425.60 15.04
i1 216 5 4 3600 2039 1734.12 14.95
l1 216 6 4 3600 1987 1645.27 17.20

Table 8: Results on Crevier instances with 96 to 216 customers.
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Conclusions

Recap
IA new Branch&Cut algorithm for the VRPIRF has been presented, capable

of very good gaps at the root node in comparison to the best known
solutions

Ion smaller instances, some new best known solutions have been found

Future work
I refinement of the code and introduction of other known cuts from the CVRP

and other problem similar to VRPIRF
I study of specific valid inequalities derived from the structural properties of

the problem

More to come..
A Branch&Price Algorithm for the same problem has been designed and its
implementation is in progress
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Thank you for your attention!

wolfler@lipn.fr gianessi@lipn.fr letocart@lipn.fr
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