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Overview 



Electric 
vehicles 
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• Growing in popularity: Tesla sold over 22,450 electric cars in 
2013 

• Have a limited range, which can cause drivers to have anxiety 
• Typically charged at home or at the office for long periods of 

time 

• Charging at origin and destination insufficient for long range 
trips 

Source: Tesla 



Charging an 
electric 
vehicle mid 
trip 

Battery exchange stations 

• A station where a car swaps an 
empty battery with a fresh one 

• Pioneered by Better Place, 
declared bankruptcy in May :( 

• Expensive since many extra 
batteries are required to be at the 
stations 

• Tesla has produced a vehicle that 
can battery swap in 90 seconds 

Fast charging stations 

• A station where a car charges its 
battery quickly to a partially full state 

• Still require a half an hour to charge 

• Placed on the US Eastern and 
Western seaboards by Tesla, and can 
be used for free 
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Source: Better Place, Tesla 



Alternative-
fuel vehicles 

 Several different types of alternative fuels 
 Compressed Natural Gas (CNG) 

 Hydrogen fuel cells 

 Specialized fuel requires specialized refueling stations, thus 
vehicles have similar problems as electric ones 

 Toyota is rolling out hydrogen powered cars in California in 2015, 
CNG vehicles already available 
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Source: Toyota, Bizjournals.com 



Objective 

• Optimization problems for design and operation of such 
vehicles are related to OR-type literature. E.g.,  
• Routing vehicles from origin to destination (OD) 

• Scheduling a fleet of vehicles to service customers 

• Given OD demand, determining how the demand 
should be distributed along roads or constrained 
resources 

• Major Issue: Electric and alternative-fuel vehicles have a 
limited distance before they need to stop and refuel, which can 
only be done at a small number of locations 

• How can we solve these optimization problems for electric and 
alternative-fuel vehicles with fixed refueling locations? 
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The electric vehicle shortest 
walk problem 
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Electric 
vehicle 
shortest walk 
problem 

• Suppose we wanted to find the route an electric vehicle 
should take from an origin to a destination 

• The route must include where to stop to recharge the 
battery 

• Can’t assume the shortest unconstrained path will have 
sufficient stops on the way 

• Not necessarily a “path” since may have to traverse 
edges multiple times 

• We may want to limit the number of stops to a certain 
number because they are frustrating 

• How do we find this shortest walk? Can it be done in 
polynomial time? 
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Brief  
Lit Review 

• Ichimori first analyzed this problem in 1981, didn’t 
account for limiting the amount of times the vehicles 
stops 

• We assume distance traveled and time are proportional, 
other people (Smith et al. 2012, Laporte & Pascoal 2011) 
analyzed the case where they are not 

• Most modeling of where to locate charging stations 
(e.g., Kuby et al. 2005) assume no detouring 
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Example 
Problem 
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OD point Intersection recharging station 

Driving limit: 20 
Stop limit: 2 

Objective is to get from 𝑠 to 𝑡 while stopping at most 2 times to 
charge the battery 



Spanning 
tree from 𝑠 
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We can pre-calculate which charging stations are reachable from the 
start point 



Spanning 
tree from 𝑒 
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We can also calculate which charging stations are reachable from 
each other, and which can reach the terminal vertex 



Meta-
network 
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• With all of those shortest paths, we can make a new meta-
network 

• The nodes in the meta-network have an edge if the vertices 
can be reached in a single charge in the original graph 

• The shortest path in this graph corresponds to the shortest 
walk in the original graph without a stop limit 



Stop limited 
meta-
network 
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• If there is a stop limit of 
𝑝, then a graph with 
𝑝 + 2 copies of the 
meta-network vertices 
should be generated 

• An edge between 
𝑥𝑖
𝑙 , 𝑥𝑗

𝑙+1  exists if 

there is an edge 𝑥𝑖 , 𝑥𝑗  
in meta-network, 
edges have the same 
cost 

• 𝑡𝑙 , 𝑡𝑙+1  edges exist 
with 0 cost 

• Polynomial time to get 
the shortest path 



Shortest 
anxiety walk 
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Distance 

Anxiety 
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• A minimum anxiety walk minimizes the maximal path length 
between charging stations 

• This generates the same meta-network (and multi-level meta-
network), only now a modified Dijkstra’s Algorithm needed to find 
best path 



Results 

• Tested on randomly generated 
data 

• Runtime grows polynomially 
with the number of stations (as 
expected through complexity 
analysis) 
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Intersection 

Refueling station 

Start/end vertex 



Extensions 

• What if the arc lengths are stochastic? Each edge has a known 
distribution and random outcome is selected each time it is 
traversed 

• Now the walk may to be altered during the traversal depending 
on the realization 

• Driver’s appetite for risk needs to be incorporated in the model 
as well 

• Can be modeled as a Markov decision process where the set of 
actions is limited to those that are sufficiently risk adverse 
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Online routing and battery 
reservations for electric vehicles in a 
network with battery exchanges 
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Battery 
exchange 
stations 
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Source: Better Place 



The steps in a 
routing and 
reservation 
system 

Car turns on 

Destination is inputted 

The system plans a route 

When driver accepts, batteries 
are reserved at stations 

DRIVE! 

Source: Tesla, Google 



Problem 
statement 

Once the battery exchange system is in place… 

• If driver wants to make a trip given a current set of available 
batteries at stations, which route should they take?  

• How do you route vehicles to minimize overall travel times? 

•  This depends on future arrivals into the system 

21 

Origin 1 

Destination 1 

Origin 2 

Destination 2 

BE Station A BE Station B 



Lit Review 

• de Weert et al. (2013) routed multiple electric vehicles 
based on future demand, but didn’t optimize globally 

• Mak (2012) determined optimal routes for stochastic EV 
demand, but there was no online component 

• Worley & Klabjan (2011) modeled when to recharge a 
station given stochastic demand, but had no network 
routing component 
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Problem 
setup 
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Network EV 
routing 
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Objective 

• A vehicle arriving at time 𝑡 spends 

• 𝜓𝑡
𝑑𝑟𝑖𝑣𝑒  time units driving 

• 𝜓𝑡,𝑖
𝑠𝑤𝑎𝑝

 time units swapping batteries at station 𝑖 

• 𝜓𝑡,𝑖
𝑤𝑎𝑖𝑡  time units waiting at station 𝑖 

• And 𝜓𝑡
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

 is the optimal time to travel between the OD 
pairs that the vehicle at time 𝑡  

• The total delay for the vehicle arriving at time 𝑡 is 

𝜓𝑡 = 𝜓𝑡
𝑑𝑟𝑖𝑣𝑒 + 𝜌1 𝜓𝑡,𝑖

𝑠𝑤𝑎𝑝
𝛽

𝑖=1
+ 𝜌2 𝜓𝑡,𝑖

𝑤𝑎𝑖𝑡
𝛽

𝑖=1
− 𝜓𝑡

𝑜𝑝𝑡𝑖𝑚𝑎𝑙
 

• To find a routing policy that minimizes the total delay 
𝔼 𝜓0 + 𝔼 𝜓1 + 𝔼 𝜓2 +⋯  
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A Markov 
chance 
decision 
system 

Markov Decision Problem 
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Approximate 
Dynamic 
Programming 

Approximate dynamic programming 

• Approximate the value of being in state 𝑆 at time 𝑡 as 𝑉 𝑡
𝑚−1 𝑆 . 

• Run a simulation of the vehicles arriving 𝑗0
𝑚, 𝑗1

𝑚, … , 𝑗𝑇
𝑚  

• Compute 𝑣 𝑡
𝑚 = min

𝑆𝑡+1∈𝑌 𝑆𝑡
𝑚,𝑗𝑡

𝑚
𝐶 𝑆𝑡

𝑚, 𝑗𝑡
𝑚, 𝑆𝑡+1 + 𝑉 𝑡+1

𝑚−1 𝑆𝑡+1  

• Set 𝑉 𝑡
𝑚 𝑆𝑡 =  

1 − 𝛼𝑚 𝑉 𝑡
𝑚−1 𝑆𝑡 + 𝛼𝑚𝑣 𝑡

𝑚 𝑆𝑡 = 𝑆𝑡
𝑚

𝑉 𝑡
𝑚−1 𝑆𝑡 otherwise.

 

• Repeat for 𝑚 = 𝑚 + 1  

 

Temporal differencing 

• Define 𝛿𝜏
𝑚 = 𝐶 𝑆𝜏

𝑚, 𝑗𝜏
𝑚, 𝑆𝜏+1

𝑚 + 𝑉 𝜏+1
𝑚−1 𝑆𝜏+1

𝑚 𝑗𝜏 − 𝑉 𝜏
𝑚−1 𝑆𝜏

𝑚|𝑗𝜏−1
𝑚  for 

𝜏 = 𝑡 …𝑇 

• Instead set 𝑉 𝑡
𝑚 𝑆𝑡 =  

𝑉 𝑡
𝑚−1 𝑆𝑡

𝑚 + 𝛼𝑚  𝜆𝑇−𝜏𝛿𝜏
𝑚𝑇

𝜏=𝑡 𝑆𝑡 = 𝑆𝑡
𝑚

𝑉 𝑡
𝑚−1 𝑆𝑡 otherwise.
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Approximate 
dynamic 
programming 

Simulate the drivers… 

0 Delay 
 
0 Delay 
 
10 Delay 

200 estimated future delay 
 
180 estimated future delay 
 
120 estimated future delay 

130 estimated future delay Temporal differencing 
– base estimate on 
many steps ahead 
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Linear value 
function 
approximation 

• Still need to define 𝑉 𝑡
𝑚 𝑆  for each 𝑆 (and there are many!) 

• Instead let: 𝑉 𝑡
𝑚 𝑆 =  𝜃𝑡𝑓

𝑚𝜙𝑓
𝑚 𝑆𝑓∈ℱ , now goal is to find best 

𝜃𝑡𝑓
𝑚 

• Approximation functions are: 
• For station 𝑏𝑖  having 𝑛𝑖  batteries: for each value 
𝑞 = 1,… , 𝑛𝑖, the define function 𝜙𝑖𝑞  which maps state 
𝑆 ∈ 𝒮 to the number of time periods in which station 𝑏𝑖  
has at least 𝑞 batteries reserved. 

• Only need one set of coefficients for all time since basis 
functions naturally decrease as time progresses, so 𝜃𝑓

𝑚 = 𝜃𝑡𝑓
𝑚 

for all 𝑡 
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Simplify 
using linear 
functions 
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One last 
complication 

 

• We know where the costs are being incurred (either from 
waiting at a particular station or a longer route) 

• We don’t want stations to be penalized for vehicles waiting at 
other stations 

• So let 𝑉 𝑡
𝑚,1 𝑆𝑡  be the cost from a longer path and swap times 

and let 𝑉 𝑡,𝑖
𝑚,2 𝑆𝑡  be the cost from having to wait at a particular 

station 𝑖 

• 𝑉 𝑡
𝑚 𝑆𝑡 = 𝑉 𝑡

𝑚,1 𝑆𝑡 +  𝑉 𝑡,𝑖
𝑚,2 𝑆𝑡

𝛽
𝑖=1  

• And the costs can be calculated directly for more accurate 
approximations 
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Last 
complication 

The state has a value of 200 time units 

Value of 50 

Value of 20 

Value of 30 

Value of 0 
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Results 
tested on 
Arizona 
network 
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Arrival Probability in Arizona Network

Too many batteries Too few batteries 

• Arizona road network used 

• Arrival probability of vehicles adjusted over several runs 

• Compared to greedy policy (cars always act in best interest) 

• Up to 23% shorter delays on average 
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Extensions 

• How do you adjust the problem to: 
• Handle non-constant demand throughout the day? 

• Have vehicles drop off batteries that are not empty? 

• Start the route with a not full battery? 
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Contributions 

• Formulated a new model for minimizing travel times 
globally for a set of electric vehicles in a stochastic 
online setting 

• Found a method for finding good policies based on 
Markov chance-decision processes and approximate 
dynamic programming 

• Tested the method on Arizona highway data and got a 
23% improvement compared to greedy routing 
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Future work 

1. EV shortest walk problem 
• Allow for stochastic cases with learning 

• Improve speed of stochastic case 

2. Online EV routing and reservations 
• Add stochastic arc lengths and surprise arrivals 

• Improve ADP results 
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